Виды электроприборов их характеристики применение. Измерение тока. Виды и приборы. Принцип измерений и особенности. Порядок измерения силы тока мультиметром


Содержание.
Введение………………………………………………………… ………………………………………………………….2
Основная часть:

Измерение сигналов переменного тока………….……………………………………………………. 4

Измерительные мосты…………………………… ………………………………………………………………6
Регистрирующие приборы…………………… ………………………………………………………………..8

Аналоговые приборы……………………………… ……………………………………………………………..9

Цифровые приборы…………………………………… ………………………………………………………….12

Электрические измерения……………………………………………………… ………….…………………14

Заключение…………………………………………………… ………………………………………………………….16
Литература…………………………………………………… …………………………………………………………..17

Введение.
Средства электрических измерений широко применяются в энергетике, связи, промышленности, на транспорте, в научных исследованиях, медицине, а так же в быту – для учета потребляемой энергии. Используя специальные датчики для преобразования неэлектрических величин в электрические, электроизмерительные приборы можно использовать для измерения самых разных физических величин, что еше больше расширяет диапазон их приенения
Наиболее существенным признаком для классификации электроизмерительной аппаратуры является измеряемая или воспроизводимая физическая величина, в соответствии с этим приборы подразделяются на ряд видов:

      амперметры - для измерения силы электрического тока ;
      вольтметры - для измерения электрического напряжения ;
      омметры - для измерения электрического сопротивления ;
      мультиметры (иначе тестеры, авометры) - комбинированные приборы
      частотомеры - для измерения частоты колебаний электрического тока;
      магазины сопротивлений - для воспроизведения заданных сопротивлений ;
      ваттметры и варметры - для измерения мощности электрического тока ;
      электрические счётчики - для измерения потреблённой электроэнергии
      и множество других видов
    Кроме этого существуют классификации по другим признакам:
      по назначению - измерительные приборы , меры , измерительные преобразователи , измерительные установки и системы, вспомогательные устройства;
      по способу представления результатов измерений - показывающие и регистрирующие (в виде графика на бумаге или фотоплёнке, распечатки, либо в электронном виде);
      по методу измерения - приборы непосредственной оценки и приборы сравнения;
      по способу применения и по конструкции - щитовые (закрепляемые на щите или панели), переносные и стационарные;
      по принципу действия:
        электромеханические:
          магнитоэлектрические;
          электромагнитные;
          электродинамические;
          электростатические;
          ферродинамические;
          индукционные;
          магнитодинамические;
        электронные;
        термоэлектрические;
        электрохимические.
ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ, измерение электрических величин, таких, как напряжение, сопротивление, сила тока, мощность. Измерения производятся с помощью различных средств – измерительных приборов, схем и специальных устройств. Тип измерительного прибора зависит от вида и размера (диапазона значений) измеряемой величины, а также от требуемой точности измерения. В электрических измерениях используются основные единицы системы СИ: вольт (В), ом (Ом), фарада (Ф), генри (Г), ампер (А) и секунда (с).

ЦИФРОВЫЕ ПРИБОРЫ.
Во всех цифровых измерительных приборах (кроме простейших) используются усилители и другие электронные блоки для преобразования входного сигнала в сигнал напряжения, который затем преобразуется в цифровую форму аналого-цифровым преобразователем (АЦП). Число, выражающее измеренное значение, выводится на светодиодный (СИД), вакуумный люминесцентный или жидкокристаллический (ЖК) индикатор (дисплей). Прибор обычно работает под управлением встроенного микропроцессора, причем в простых приборах микропроцессор объединяется с АЦП на одной интегральной схеме. Цифровые приборы хорошо подходят для работы с подключением к внешнему компьютеру. В некоторых видах измерений такой компьютер переключает измерительные функции прибора и дает команды передачи данных для их обработки.

Аналого-цифровые преобразователи.

Существуют три основных типа АЦП: интегрирующий, последовательного приближения и параллельный. Интегрирующий АЦП усредняет входной сигнал по времени. Из трех перечисленных типов это самый точный, хотя и самый «медленный». Время преобразования интегрирующего АЦП лежит в диапазоне от 0,001 до 50 с и более, погрешность составляет 0,1–0,0003%. Погрешность АЦП последовательного приближения несколько больше (0,4–0,002%), но зато время преобразования – от ~10мкс до ~1 мс. Параллельные АЦП – самые быстродействующие, но и наименее точные: их время преобразования порядка 0,25 нс, погрешность – от 0,4 до 2%.

Методы дискретизации.

Сигнал дискретизируется по времени путем быстрого измерения его в отдельные моменты времени и удержания (сохранения) измеренных значений на время преобразования их в цифровую форму. Последовательность полученных дискретных значений может выводиться на дисплей в виде кривой, имеющей форму сигнала; возводя эти значения в квадрат и суммируя, можно вычислять среднеквадратическое значение сигнала; их можно использовать также для вычисления времени нарастания, максимального значения, среднего по времени, частотного спектра и т.д. Дискретизация по времени может производиться либо за один период сигнала («в реальном времени»), либо (с последовательной или произвольной выборкой) за ряд повторяющихся периодов.

Цифровые вольтметры и мультиметры.

Цифровые вольтметры и мультиметры измеряют квазистатическое значение величины и указывают его в цифровой форме. Вольтметры непосредственно измеряют только напряжение, обычно постоянного тока, а мультиметры могут измерять напряжение постоянного и переменного тока, силу тока, сопротивление постоянному току и иногда температуру. Эти самые распространенные контрольно-измерительные приборы общего назначения с погрешностью измерения от 0,2 до 0,001% могут иметь 3,5- или 4,5-значный цифровой дисплей. «Полуцелый» знак (разряд) – это условное указание на то, что дисплей может показывать числа, выходящие за пределы номинального числа знаков. Например, 3,5-значный (3,5-разрядный) дисплей в диапазоне 1–2 В может показывать напряжение до 1,999 В.

Измерители полных сопротивлений.

Это специализированные приборы, измеряющие и показывающие емкость конденсатора, сопротивление резистора, индуктивность катушки индуктивности или полное сопротивление (импеданс) соединения конденсатора или катушки индуктивности с резистором. Имеются приборы такого типа для измерения емкости от 0,00001 пФ до 99,999 мкФ, сопротивления от 0,00001 Ом до 99,999 кОм и индуктивности от 0,0001 мГ до 99,999 Г. Измерения могут проводиться на частотах от 5 Гц до 100 МГц, хотя ни один прибор не перекрывает всего диапазона частот. На частотах, близких к 1 кГц, погрешность может составлять лишь 0,02%, но точность снижается вблизи границ диапазонов частоты и измеряемых значений. Большинство приборов могут показывать также производные величины, такие, как добротность катушки или коэффициент потерь конденсатора, вычисляемые по основным измеренным значениям.

АНАЛОГОВЫЕ ПРИБОРЫ

Для измерения напряжения, силы тока и сопротивления на постоянном токе применяются аналоговые магнитоэлектрические приборы с постоянным магнитом и многовитковой подвижной частью. Такие приборы стрелочного типа характеризуются погрешностью от 0,5 до 5%. Они просты и недороги (пример – автомобильные приборы, показывающие ток и температуру), но не применяются там, где требуется сколько-нибудь значительная точность.

Магнитоэлектрические приборы.

В таких приборах используется сила взаимодействия магнитного поля с током в витках обмотки подвижной части, стремящаяся повернуть последнюю. Момент этой силы уравновешивается моментом, создаваемым противодействующей пружиной, так что каждому значению тока соответствует определенное положение стрелки на шкале. Подвижная часть имеет форму многовитковой проволочной рамки с размерами от 3?5 до 25?35 мм и делается как можно более легкой. Подвижная часть, установленная на каменных подшипниках или подвешенная на металлической ленточке, помещается между полюсами сильного постоянного магнита. Две спиральные пружинки, уравновешивающие крутящий момент, служат также токопроводами обмотки подвижной части.
Магнитоэлектрический прибор реагирует на ток, проходящий по обмотке его подвижной части, а потому представляет собой амперметр или, точнее, миллиамперметр (так как верхний предел диапазона измерений не превышает примерно 50 мА). Его можно приспособить для измерения токов большей силы, присоединив параллельно обмотке подвижной части шунтирующий резистор с малым сопротивлением, чтобы в обмотку подвижной части ответвлялась лишь малая доля полного измеряемого тока. Такое устройство пригодно для токов, измеряемых многими тысячами ампер. Если последовательно с обмоткой присоединить добавочный резистор, то прибор превратится в вольтметр. Падение напряжения на таком последовательном соединении равно произведению сопротивления резистора на ток, показываемый прибором, так что его шкалу можно проградуировать в вольтах. Чтобы сделать из магнитоэлектрического миллиамперметра омметр, нужно присоединять к нему последовательно измеряемые резисторы и подавать на это последовательное соединение постоянное напряжение, например от батареи питания. Ток в такой схеме не будет пропорционален сопротивлению, а потому необходима специальная шкала, корректирующая нелинейность. Тогда можно будет производить по шкале прямой отсчет сопротивления, хотя и с не очень высокой точностью.

Гальванометры.

К магнитоэлектрическим приборам относятся и гальванометры– высокочувствительные приборы для измерения крайне малых токов. В гальванометрах нет подшипников, их подвижная часть подвешена на тонкой ленточке или нити, используется более сильное магнитное поле, а стрелка заменена зеркальцем, приклеенным к нити подвеса (рис. 1). Зеркальце поворачивается вместе с подвижной частью, а угол его поворота оценивается по смещению отбрасываемого им светового зайчика на шкале, установленной на расстоянии около 1 м. Самые чувствительные гальванометры способны давать отклонение по шкале, равное 1 мм, при изменении тока всего лишь на 0,00001 мкА.

РЕГИСТРИРУЮЩИЕ ПРИБОРЫ.
Регистрирующие приборы записывают «историю» изменения значения измеряемой величины. К таким приборам наиболее распространенных типов относятся ленточные самописцы, записывающие пером кривую изменения величины на диаграммной бумажной ленте, аналоговые электронные осциллографы, развертывающие кривую процесса на экране электронно-лучевой трубки, и цифровые осциллографы, запоминающие однократные или редко повторяющиеся сигналы. Основное различие между этими приборами – в скорости записи. Ленточные самописцы с их движущимися механическими частями наиболее подходят для регистрации сигналов, изменяющихся за секунды, минуты и еще медленнее. Электронные осциллографы же способны регистрировать сигналы, изменяющиеся за время от миллионных долей секунды до нескольких секунд.

ИЗМЕРИТЕЛЬНЫЕ МОСТЫ.
Измерительный мост – это обычно четырехплечая электрическая цепь, составленная из резисторов, конденсаторов и катушек индуктивности, предназначенная для определения отношения параметров этих компонентов. К одной паре противоположных полюсов цепи подключается источник питания, а к другой – нуль-детектор. Измерительные мосты применяются только в тех случаях, когда требуется наивысшая точность измерения. (Для измерений со средней точностью лучше пользоваться цифровыми приборами, поскольку они проще в обращении.) Наилучшие трансформаторные измерительные мосты переменного тока характеризуются погрешностью (измерения отношения) порядка 0,0000001%. Простейший мост для измерения сопротивления носит имя своего изобретателя Ч.Уитстона.
Двойной измерительный мост постоянного тока.
К резистору трудно подсоединить медные провода, не привнеся при этом сопротивления контактов порядка 0,0001 Ом и более. В случае сопротивления 1 Ом такой токоподвод вносит ошибку порядка всего лишь 0,01%, но для сопротивления 0,001 Ом ошибка будет составлять 10%. Двойной измерительный мост (мост Томсона), схема которого представлена на рис. 2, предназначен для измерения сопротивления эталонных резисторов малого номинала. Сопротивление таких четырехполюсных эталонных резисторов определяют как отношение напряжения на их потенциальных зажимах (р 1 , р 2 резистора R s и р 3 , p 4 р езистора R x на рис. 2) к току через их токовые зажимы (с 1 , с 2 и с 3 , с 4). При такой методике сопротивление присоединительных проводов не вносит ошибки в результат измерения искомого сопротивления. Два дополнительных плеча m и n исключают влияние соединительного провода 1 между зажимами с 2 и с 3 . Сопротивления m и n этих плеч подбирают так, чтобы выполнялось равенство M /m = N /n . Затем, изменяя сопротивление R s , сводят разбаланс к нулю и находят
R x = R s (N /M ).

Измерительные мосты переменного тока.
Наиболее распространенные измерительные мосты переменного тока рассчитаны на измерения либо на сетевой частоте 50–60 Гц, либо на звуковых частотах (обычно вблизи 1000 Гц); специализированные же измерительные мосты работают на частотах до 100 МГц. Как правило, в измерительных мостах переменного тока вместо двух плеч, точно задающих отношение напряжений, используется трансформатор. К исключениям из этого правила относится измерительный мост Максвелла – Вина.

Измерительный мост Максвелла – Вина.
Такой измерительный мост позволяет сравнивать эталоны индуктивности (L ) с эталонами емкости на не известной точно рабочей частоте. Эталоны емкости применяются в измерениях высокой точности, поскольку они конструктивно проще прецизионных эталонов индуктивности, более компактны, их легче экранировать, и они практически не создают внешних электромагнитных полей. Условия равновесия этого измерительного моста таковы: L x = R 2 R 3 C 1 и R x = (R 2 R 3) /R 1 (рис. 3). Мост уравновешивается даже в случае «нечистого» источника питания (т.е. источника сигнала, содержащего гармоники основной частоты), если величина L x не зависит от
частоты.

Заключение.
Электрическое измерение – это нахождение (экспериментальными методами) значения физической величины, выраженного в соответствующих единицах (например, 3 А, 4 В). Значения единиц электрических величин определяются международным соглашением в соответствии с законами физики и единицами механических величин. Поскольку «поддержание» единиц электрических величин, определяемых международными соглашениями, сопряжено с трудностями, их представляют «практическими» эталонами единиц электрических величин. Такие эталоны поддерживаются государственными метрологическими лабораториями разных стран. Например, в США юридическую ответственность за поддержание эталонов единиц электрических величин несет Национальный институт стандартов и технологии. Время от времени проводятся эксперименты по уточнению соответствия между значениями эталонов единиц электрических величин и определениями этих единиц. В 1990 государственные метрологические лаборатории промышленно развитых стран подписали соглашение о согласовании всех практических эталонов единиц электрических величин между собой и с международными определениями единиц этих величин.
Электрические измерения проводятся в соответствии с государственными эталонами единиц напряжения и силы постоянного тока, сопротивления постоянному току, индуктивности и емкости. Такие эталоны представляют собой устройства, имеющие стабильные электрические характеристики, или установки, в которых на основе некоего физического явления воспроизводится электрическая величина, вычисляемая по известным значениям фундаментальных физических констант. Эталоны ватта и ватт-часа не поддерживаются, так как более целесообразно вычислять значения этих единиц по определяющим уравнениям, связывающим их с единицами других величин.
Электроизмерительные приборы чаще всего измеряют мгновенные значения либо электрических величин, либо неэлектрических, преобразованных в электрические. Все приборы делятся на аналоговые и цифровые. Первые обычно показывают значение измеряемой величины посредством стрелки, перемещающейся по шкале с делениями. Вторые снабжены цифровым дисплеем, который показывает измеренное значение величины в виде числа. Цифровые приборы в большинстве измерений более предпочтительны, так как они более точны, более удобны при снятии показаний и, в общем, более универсальны. Цифровые универсальные измерительные приборы («мультиметры») и цифровые вольтметры применяются для измерения со средней и высокой точностью сопротивления постоянному току, а также напряжения и силы переменного тока. Аналоговые приборы постепенно вытесняются цифровыми, хотя они еще находят применение там, где важна низкая стоимость и не нужна высокая точность. Для самых точных измерений сопротивления и полного сопротивления (импеданса) существуют измерительные мосты и другие специализированные измерители. Для регистрации хода изменения измеряемой величины во времени применяются регистрирующие приборы – ленточные самописцы и электронные осциллографы, аналоговые и цифровые.

Литература.
1 Атамалян Э. Г. Приборы и методы измерения электрических величин - издательство «ДРОФА», 2005
2 Панфилов В. А. Электрические измерения - издательство «Академия», 2008

Яндекс.Директ

Электроизмерительные приборы

Текст В настоящее время существуют приборы, с помощью которых могут быть произведены измерения более 50 электрических величин. Перечень электрических величин включает в себя ток, напряжение, частоту, отношение токов и напряжений, сопротивление, емкость, индуктивность, мощность и т.д. Появление множества технических средств реализующих измерения, являеться вытекающим из многообразия количества измеряемых величин. Электроизмерительную аппаратуру и приборы можно классифицировать по ряду признаков. По функциональному признаку эту аппаратуру и приборы можно разделить на средства сбора, обработки и представления измерительной информации и средства аттестации и поверки.

Электроизмерительную аппаратуру по назначению можно разделить на меры, системы, приборы и вспомогательные устройства. Кроме того, важный класс электроизмерительных приборов составляют преобразователи, предназначенные для преобразования электрических величин в процессе измерения или преобразования измерительной информации.

Здесь будет рассмотрена лишь часть измерительных приборов, необходимых для ремонта и обслуживания бытовых электроприборов и электрооборудования! Так же будут представлены некоторые приборы не применяемые в быту, а описаны лиш для общего ознакомления!

Измерение силы тока, количества электричества и зарядов – Трансформаторы тока, амперметры, вольтметры, мультиметры

Трансформаторы тока – служат для передачи сигналов измерительной информации измерительным приборам и/или устройствам защиты и управления в электросетях переменного тока промышленной частоты.

Амперметры и вольтметры – служат для измерения тока и напряжения в электросетях.

Мультиметры- служат для измерения основных электрических величин: напряжения и силы постоянного и переменного токов, а также сопротивления постоянному току и тестирования p-n переходов и др. так же применяются при изготовлении, эксплуатации и ремонте электро- и радиоаппаратуры.

Измерение ЭДС и напряжения – Трансформаторы напряжения, вольтметры

Трансформаторы напряжения – служат для измерений высоких напряжений переменного тока промышленной частоты.

Измерение мощности и энергии – Счетчики электрической энергии, ваттметры

Счетчики электрической энергии – служит для измерения и учета активной/реактивной энергии.

Ваттметры – для точных измерений мощности в цепях постоянного и переменного тока, а также для поверки менее точных приборов.

Система информационно-измерительная автоматизированная коммерческого учета электроэнергии – для измерения активной и реактивной энергии, а также для автоматизированного сбора, обработки, хранения и отображения информации, для коммерческого учета электроэнергии.

Прочие (Измерения электрических и магнитных величин) - Контроллеры, измерительные системы и комплексы.

Контроллеры – служат для измерения, регистрации и обработки напряжения и силы постоянного тока, параметров однофазных и трехфазных цепей переменного тока (действующих значений напряжения и силы переменного тока, активной, реактивной и полной мощности, частоты, угла сдвига фаз), их преобразования в цифровой код, а также для формирования аналоговых сигналов управления технологическим оборудованием в различных отраслях промышленности, главным образом энергетике.

Комплексы измерительные – служат для измерения параметров импульсных электромагнитных помех с целью определения качества выполнения заземляющего устройства (ЗУ), область применения – оборудование энергообъектов, электрические цепи (электрощиты) зданий и промышленных помещений.

Системы измерительные – служит для непрерывного измерения и контроля технологических параметров.

Измерение электрического сопротивления, проводимости, емкости, угла сдвига фаз, индуктивности и добротности электрических цепей, параметров диэлектриков – Мегаомметры, измерители сопротивления.

Измерение характеристик магнитных полей, свойств магнитных материалов – Тесламетры, измерители магнитной индукции.

Самописцы – приборы для вывода результатов измерений температуры, напряжения и тока, влажности, интегральных импульсов и вращения с возможностью сохранения данных и вывода их на бумажный носитель.

Метрологическое оборудование – Генераторы эталонных электрических сигналов, прецизионные мультиметры, калибраторы тестового оборудования, многофункциональные калибраторы, эталонные счетчики электрической энергии для оснащения лабораторий и работы в полевых условиях.

Измерение параметров высоковольтного оборудования - Импульсный локатор повреждений кабеля, прибор контроля выключателей, прибор контроля РПН трансформаторов…

Электроизмерительные приборы по материалам Википедии .

Применение Средства электрических измерений широко применяются в энергетике, связи, промышленности, на транспорте, в научных исследованиях, медицине, а также в быту - для учёта потребляемой электроэнергии. Используя специальные датчики для преобразования неэлектрических величин в электрические, электроизмерительные приборы можно использовать для измерения самых разных физических величин, что ещё больше расширяет диапазон их применения.

Классификация

  • Наиболее существенным признаком для классификации электроизмерительной аппаратуры является измеряемая или воспроизводимая физическая величина, в соответствии с этим приборы подразделяются на ряд видов:
  • амперметры - для измерения силы электрического тока;
  • вольтметры - для измерения электрического напряжения;
  • омметры - для измерения электрического сопротивления;
  • мультиметры – (иначе тестеры, авометры) - комбинированные приборы
  • частотомеры - для измерения частоты колебаний электрического тока;
  • магазины сопротивлений - для воспроизведения заданных сопротивлений;
  • ваттметры и варметры - для измерения мощности электрического тока;
  • электрические счётчики - для измерения потреблённой электроэнергии
  • и множество других видов
  • Кроме этого существуют классификации по другим признакам:
  • по назначению - измерительные приборы, меры, измерительные преобразователи, измерительные установки и системы, вспомогательные устройства;
  • по способу представления результатов измерений - показывающие и регистрирующие (в виде графика на бумаге или фотоплёнке, распечатки, либо в электронном виде);
  • по методу измерения - приборы непосредственной оценки и приборы сравнения;
  • по способу применения и по конструкции - щитовые (закрепляемые на щите или панели), переносные и стационарные;
  • по принципу действия: лектромеханические, магнитоэлектрические, электромагнитные, электродинамические электростатические, ферродинамические, индукционные, магнитодинамические, электронные, термоэлектрические, электрохимические.

Обозначения

Зарубежных странах обозначения средств измерений устанавливаются предприятиями-изготовителями, в России (и частично в других странах СНГ) традиционно принята унифицированная система обозначений, основанная на принципах действия электроизмерительных приборов. В состав обозначения входит прописная русская буква, соответствующая принципу действия прибора, и число - условный номер модели. Например: С197 - киловольтметр электростатический. К обозначению могут добавляться буквы М (модернизированный), К (контактный) и другие, отмечающие конструктивные особенности или модификации приборов.

Любое производство подразумевает использование Они необходимы и в быту: согласитесь, сложно обойтись во время ремонта без самых простых измерительных приборов, таких как линейка, рулетка, штангенциркуль и т. п. Давайте поговорим о том, какие существуют измерительные инструменты и приборы, в чем их принципиальные отличия и где применяются те или иные виды.

Общие сведения и термины

Измерительный прибор - устройство, с помощью которого получают значение физической величины в заданном диапазоне, определяемом шкалой прибора. Кроме того, такой инструмент позволяет переводить величины, делая их более понятными оператору.

Контрольный прибор используется для контроля проведения технологического процесса. К примеру, это может быть какой-либо датчик, установленный в нагревательной печи, кондиционере, отопительном оборудовании и так далее. Такой инструмент нередко определяет и свойства. В настоящее время выпускают самые различные и приборы, среди которых есть как простые, так и сложные. Некоторые нашли свое применение в одной другие же используются повсеместно. Чтобы более подробно разобраться с этим вопросом, необходимо классифицировать данный инструмент.

Аналоговые и цифровые

Контрольно-измерительные приборы и инструменты разделяются на аналоговые и цифровые. Второй вид более популярен, так как различные величины, к примеру, сила тока или напряжение, переводятся в числа и выводятся на экран. Это очень удобно и только так можно добиться высокой точности снятия показаний. Однако необходимо понимать, что в любой контрольно-измерительный цифровой прибор входит аналоговый преобразователь. Последний представляет собой датчик, который снимает показания и отправляет данные для преобразования в цифровой код.

Аналоговые измерительные и контрольные инструменты более просты и надежны, но в это же время менее точны. Причем они бывают механическими и электронными. Последние отличаются тем, что имеют в своем составе усилители и преобразователи величин. Они более предпочтительны по целому ряду причин.

Классификация по разным признакам

Измерительные инструменты и приборы принято разделять на группы в зависимости от способа предоставления информации. Так, бывают регистрирующие и показывающие инструменты. Первые характерны тем, что способны записывать показания в память. Нередко используются самопишущие приборы, которые самостоятельно распечатывают данные. Вторая группа предназначена исключительно для контроля в реальном времени, то есть во время снятия показаний оператор должен находиться около прибора. Также контрольно-измерительный инструмент классифицируют по :

  • прямого действия - осуществляется преобразование одной или нескольких величин без сравнения с одноименной величиной;
  • сравнительные - измерительный инструмент, предназначенный для сравнения измеряемой величины с уже известной.

Какие бывают приборы по форме представления показаний (аналоговые и цифровые), мы уже разобрались. Также классифицируют измерительные инструменты и приборы по другим параметрам. К примеру, бывают суммирующие и интегрирующие, стационарные и щитовые, нормируемые и ненормируемые приборы.

Измерительные слесарные инструменты

С такими приборами мы встречаемся наиболее часто. Тут важна точность работ, а так как используется механический инструмент (по большей части), то удается добиться погрешности от 0,1 до 0,005 мм. Любая недопустимая погрешность приводит к тому, что потребуется переточка или вовсе замена детали или целого узла. Именно поэтому при подгонке вала под втулку слесарь использует не линейки, а более точные инструменты.

Самое популярное слесарное измерительное оборудование - штангенциркуль. Но и такой относительно точный прибор не гарантирует 100%-ный результат. Именно поэтому опытные слесари всегда делают большое количество измерений, после чего выбирается Если требуется получить более точные показания, то используют микрометр. Он позволяет проводить измерения до сотых долей миллиметров. Однако многие думают, что данный инструмент способен измерять до микронов, что не совсем так. Да и вряд ли при проведении простых слесарных работ в домашних условиях потребуется такая точность.

Про угломеры и щупы

Нельзя не рассказать о таком популярном и эффективном инструменте, как угломер. Из названия можно понять, что он используется, если требуется точно измерить углы деталей. Состоит прибор из полудиска с намеченной шкалой. На нем имеется линейка с передвижным сектором, на который нанесена шкала нониуса. Для закрепления передвижного сектора линейки на полудиске используется стопорный винт. Сам по себе процесс измерения довольно прост. Для начала необходимо приложить измеряемую деталь одной гранью к линейке. При этом линейка сдвигается так, чтобы между гранями детали и линейками образовался равномерный просвет. После этого сектор закрепляется стопорным винтом. Первым делом снимаются показания с основной линейки, а затем с нониуса.

Нередко для измерения зазора используется щуп. Он представляет собой элементарный набор пластин, закрепленных в одной точке. Каждая пластина имеет свою толщину, которую мы знаем. Устанавливая большее или меньшее количество пластин, можно довольно точно измерить зазор. В принципе, все эти измерительные инструменты ручные, но они довольно эффективны и вряд ли предоставляется возможным их заменить. А сейчас пойдем дальше.

Немного истории

Следует отметить, рассматривая измерительные инструменты: виды их очень разнообразны. Основные приборы мы с вами уже изучили, а сейчас бы хотелось поговорить о немного и о других инструментах. К примеру, ацетометр используется для измерения крепости Данный прибор способен определять количество свободных уксусных кислот в растворе, а был изобретен Отто и использовался на протяжении 19 и 20 веков. Сам по себе ацетометр похож на градусник и состоит из стеклянной трубки 30х15см. Также имеется специальная шкала, которая и позволяет определять необходимый параметр. Тем не менее сегодня есть более продвинутые и точные методы определения химического состава жидкости.

Барометры и амперметры

А вот с данными инструментами знаком практически каждый из нас еще со школы, техникума или университета. К примеру, барометр используется для измерения атмосферного давления. Сегодня применяются жидкостные и механические барометры. Первые можно назвать профессиональными, так как их конструкция несколько сложней, а показания точней. На метеостанциях используют ртутные барометры, так как они наиболее точные и надежные. Механические варианты хороши своей простотой и надежностью, но они постепенно заменяются цифровыми приборами.

Такие инструменты и приборы для измерений, как амперметры, тоже знакомы каждому. Они нужны для измерения силы тока в амперах. Шкала современных приборов градируется по-разному: микроамперами, килоамперами, миллиамперами и т. п. Амперметры всегда стараются подключать последовательно: это необходимо для понижения сопротивления, что позволит увеличить точность снимаемых показаний.

Заключение

Вот мы и поговорили с вами о том, что такое контрольные и измерительные инструменты. Как вы видите, все друг от друга отличаются и имеют совершенно разную сферу применения. Одни используются в метеорологии, другие в машиностроении, а третьи - в химической промышленности. Тем не менее цель у них одна - измерить показания, записать их и проконтролировать качество. Для этого целесообразно использовать точные измерительные инструменты. Но этот параметр способствует и тому, что устройство становится сложнее, и процесс измерения зависит от большего количества факторов.


Лабораторная работа № 2-0

ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ И МЕТОДЫ ИЗМЕРЕНИЯ

Цель работы:познакомитьсяс электроизмерительными приборами и методами измерений.

ОТВЕТЫ НА КОНТРОЛЬНЫЕ ВОПРОСЫ

Электроизмерительные приборы. Типы приборов.

Электроизмерительные приборы служат для контроля режима работы электрических установок, их испытания и учета расходуемой электрической энергии.

В зависимости от назначения электроизмерительные приборы подразделяют:

1) амперметры (измерители тока);

2) вольтметры (измерители напряжения);

3) ваттметры (измерители мощности);

4) омметры (измерители сопро­тивления);

5) частотомеры (измерители частоты переменного тока);

6) счетчики электрической энергии и др.

Типы приборов. В зависимости от способа отсчета приборы подразделяют на приборы непосредственного отсчета (непосредственной оценки) и приборы сравнения. Приборами непосредственного отсчета называются такие, которые позволяют производить отсчет измеряемой величины непосредственно на шкале. К ним отно­сятся амперметры, вольтметры, ваттметры и др. Основной частью каждого такого прибора является измери­тельный механизм. При воздействии измеряемой электри­ческой величины (тока, напряжения, мощности и др.) на измерительный механизм прибора установленная на его оси стрелка поворачивается на некоторый угол, по которому на шкале прибора определяют значение измеряемой величины.

В электроизмерительных приборах сравнения изме­рения осуществляют путем сравнения измеряемой вели­чины с какой-либо образцовой мерой (эталоном). К ним относятся мосты для измерения сопротивлений и ком­пенсационные измерительные устройства (потенцио­метры).



Действие электроизмерительных приборов непосред­ственной оценки основано на различных проявлениях электрического тока (магнитном, тепловом, электроди­намическом и пр.). Отметим некоторые особенности конструкции деталей приборов. Шкала служит для производства отсчета измеряемой величины. Цифры возле делений обозначают либо число делений от нуля шкалы (обычно в приборах 0,2; 0,5 класса точности), либо непосредственно значение измеряемой величины (остальные классы точности). В первом случае для получения значения измеряемой величины в практических единицах нужно определить цену одного деления шкалы прибора (иногда называемую постоянной прибора) и умножить ее на число отсчитанных делений. Например, имеем прибор, который может измерять напряжение от 0 до 250 В (рис. 1).

Цена деления: С = 250 / 50 = 5 В / дел.

Рис. 1.

Шкала вольтметра от 0 до 250 В

При отсчете луч зрения должен быть перпендикулярен шкале, иначе возможна погрешность от параллакса. При отсчете по зеркальной шкале глаз наблюдателя должен быть расположен так, чтобы конец стрелки покрывал свое изображение в зеркале. В целях сокращения промежутка времени, необходимого для успокоения подвижной части прибора (после включения), имеются специальные тормозящие устройства (демпферы).

В зависимости от принципа действия электроизмерительные приборы относятся к магнитоэлектрической, электромагнитной, электродинамической, термоэлектрической, выпрямительной, индукционной и электростатической системам. Каждая из этих систем имеет условное обозначение.


Перечислять электроизмерительные приборы можно довольно долго, однако им дается и одно обобщающее определение. Это класс устройств, которые, так или иначе, измеряют различные электрические величины. Стоит заметить, что в эту группу входят не только те инструменты, которые направлены непосредственно на измерение величин, но и такие, которые могут выполнять и дополнительные функции, наряду с измерением. А также те, чьей основной задачей не является само измерение, но она выполняется в комплексе со всей работой прибора.


Рассматриваемые приборы имеют широчайший спектр применения. Сюда входит и медицина, и научные исследования, и промышленность, и транспорт , и энергетика , и связь, и многие другие сферы. Используем мы и представителей электроизмерителей в быту, чтобы вести учет потребляемой нами электроэнергии. А с тех пор, как изобрели специальные датчики , которые преображают любой вид энергии в электрическую, применение таких приборов возросло до вселенских масштабов.

Классификация приборов.

Классификация электрических приборов достаточно объемна, но можно выделить некоторые устройства:

  • амперметры;
  • омметры;
  • вольтметры ;
  • мультиметры (это комбинированные приборы, могут содержать в себе несколько преображений энергии);
  • ваттметры;
  • частотометры;
  • счетчики.

Эти приборы разделяются по виду показываемой или воспроизводимой величины. И такая классификация наиболее существенна. Однако разделяют устройства и с помощью других признаков:

  • по способу информирования человека, который с ними работает;
  • по способу приборного применения;
  • по способу измерения, например, один инструмент только показывает ту или иную величину, а второй – сравнивает ее с другой;
  • по действию, или его принципу;
  • по конструкции, могут быть изготовлены в качестве щитов, а могут быть стационарными и переносными.

Однако наиболее понятно будет рассмотреть какой-либо определенный прибор конкретно.

Малогабаритные трансформаторы .

На примере нагрузочных трансформаторов Н-12 можно рассмотреть электроприборы. Нагрузочные трансформаторы Н-12 имеют свои особенности. Нагрузочные трансформаторы Н-12 нашли свое назначение в испытаниях распределителей тока на автоматических выключателях, а также на релейных защитах.

При этом сила первичного тока не должна превышать 12 кА, в то время, когда их проверяют или налаживают. Это устройство имеет самую оптимальную конструкцию. В ней удалось совместить минимизацию сетевой нагрузки и удобство, которое заключается в легкости и компактности. Нагрузочные трансформаторы Н-12 могут работать, как в комплектации с другими устройствами, но только из серии «Сатурн», так и в режиме автономности. При работе в комплекте, рассматриваемое устройство обеспечивает заданную длительность работы и регулировку тока самого трансформатора. В качестве еще одного плюса можно отметить работоспособность прибора с последовательным и параллельным напряжением. Когда нагрузочный трансформатор Н-12 работает в комплекте, он обеспечивает:

  • даже при больших токах малую сетевую нагрузку;
  • безопасность для рабочего , которая получается вследствие разделения цепей – первичной и вторичной;
  • исключение износа или же подгорания всех контактов, с которыми соприкасается или работает;
  • широчайший диапазон силы тока, она может доходить до нескольких тысяч;
  • маленькие габариты и удобства в транспортировки к нужному месту.

В комплекте с устройством идут токопровода длиною в 0,7 миллиметров и сечением в 240 квадратных миллиметров.

Проверка автоматических выключателей и устройства для этого.

Устройства для проверки автоматических выключателей предназначаются для контроля работоспособности выключателей автоматического режима, в профилактических целях. Такую проверку надо проводить своевременно и периодически, в противном случае, ее отсутствие может повлечь за собой неприятные и негативные последствия. Такие устройства работают только с цепями переменного тока. Особенностью устройств для проверки автоматических выключателей является то, что прогрузка этих выключателей происходит на переменном токе с синусоидальным характером. Этот факт гарантирует пользователям достоверность контроля.

Рассматриваемая аппаратура работает в двух режимах: длительный и кратковременный. В обоих этих режимах, заданное токовое значение устанавливается вручную. Работник устройства последовательно увеличивает ток от его начального показателя до того, который необходим или задан. Среди плюсов устройства для проверки автоматических выключателей можно выделить то, что доступна погрузка каждого полюса в отдельности при работе с любым автоматическим выключателем.