Виды газовых горелок и принципы их работы. Газовые горелки для котлов отопления — виды и принцип работы Классификация газогорелочных устройств

Заслуженно считаются самыми востребованными среди подобного оборудования. Их преимущества вполне очевидны:

1. Газ доступен: цена этого топлива приемлема, при наличии газовой магистрали нет никаких проблем с его доставкой.

2. Все виды газовых горелок более просты и надежны в эксплуатации, чем, например, горелки на мазуте или жидком топливе.

3. Широкий диапазон мощностей: существуют типы газовых горелок, которые полностью соответствуют потребностям крупных промышленных предприятий, а также модели, подходящие для домашнего использования.

4. Многие модели газовых горелок оснащаются современными системами, автоматизирующими их работу. Это позволяет добиться максимального удобства, безопасности и безотказности в работе.

Чтобы эффективно работала, при выборе нужно учитывать несколько основных параметров. Сориентироваться в большом ассортименте помогает классификация этого оборудования.

По области применения

Классификация газовых горелок в зависимости от области применения:

1. Специальные горелки, разработанные для применения в печах определенной конструкции. Такие модели нельзя использовать с огневыми установками других типов.

2. Универсальные устройства, которые могут быть установлены на большинство типов топок и печей.

По способу образования топливной смеси

Газ сжигается не в чистом виде. Он включается в состав топливной смеси, вторым компонентом которой является воздух. Топливная смесь может образовываться различными способами. В связи с этим выделяют три основных вида газовых горелок:

1. Дутьевые. В горелках такого типа воздух подается нагнетанием.

2. Инжекционные. Воздух подается засасыванием.

3. Диффузионные. Воздух в таких горелках притекает к пламени естественным образом из окружающей среды.

Инжекционные горелки, как правило, являются частью самого котла, а вентиляционные обычно приобретаются как отдельное оборудование. Дутьевая горелка позволяет осуществлять довольно точную и плавную регулировку мощности работы. Благодаря этому, появляется возможность увеличения КПД оборудования за счет рационального использования газа. Работа в оптимальном режиме позволяет экономить топливо, а также снижать выбросы в окружающую среду углекислого газа. Единственным недостатком горелки дутьевого типа можно считать более высокую шумность работы.

Дутьевые газовые горелки различаются по типу подачи воздуха и способу образования топливной смеси:

1. Принудительная подача воздуха и полное предварительное смешивание.

2. Принудительная подача и частичное предварительное смешивание.

3. Принудительная подача воздуха без предварительного смешивания.

Для того чтобы увеличить интенсивность образования воздушно-газовой горючей смеси, в установках применяются различные технологии смешения: подача газа в виде тонких струек, направленных под углом к потоку воздуха; разделение на множество мелких потоков, в которых и осуществляется смешивание; закручивание потоков газа и воздуха при помощи различных встроенных устройств.

Искусственная подача воздуха позволяет увеличивать интенсивность сжигания топливной смеси. Соответственно, выбор газовой горелки с принудительной подачей топлива позволяет достичь большей мощности.

Классификация газовых горелок по теплотворности сжигаемого топлива:

1. Высококалорийные газовые горелки. Минимальная теплота сгорания газа составляет 20 МДж/м3. Такие горелки предназначены для сжигания природных и попутных нефтяных газов.

2. Среднекалорийные горелки. Теплота сгорания топлива в таком виде газовых горелок находится в диапазоне от 8 до 20 МДж/м3 (коксовый газ).

3. Низкокалорийные газовые горелки. Такой тип используется для сжигания газа, характеризующегося теплотой сгорания ниже 8 МДж/м3 (генераторный и доменный газ).

Виды газовых горелок по избыточному давлению:

1. Высокого давления (более 30 кПа).

2. Среднего давления (от 5 до 30 кПа).

3. Низкого давления (до 5 кПа).

Наибольшее распространение получили горелки низкого и среднего давления. Горелки высокого давления часто применяются для сжигания низкокалорийных газов.

По локализации пламени:

1. В свободном факеле.

2. В перфорированной, пористой или зернистой огнеупорной массе.

3. В огнеупорной камере сгорания или тоннеле.

4. На огнеупорной поверхности.

Горелки, сжигающие топливную смесь в свободном факеле или огнеупорном тоннеле, используются в котлах для нагрева теплоносителя (воды, воздуха и т. п.). Модели, сжигающие газ в пористой массе или на огнеупорной поверхности, применяются для обогрева методом инфракрасного излучения.

Классификация позволяет даже неспециалистам сориентироваться в многообразии этого оборудования. Так как выбрать газовую горелку, спросите Вы? Следует выбирать тот вариант, в котором оптимально сочетаются все необходимые характеристики. При этом важно учитывать, в каких условиях предполагается использовать оборудование и какие нагрузки оно должно выдерживать. Правильно выбранная горелка способна эффективно работать как в бытовой, так и в промышленной сфере в течение долгого времени.

В литературе газовые горелки классифицируются по: а) теп­лоте сгорания газа; б) давлению газа в сети; в) назначению; г) ме­тоду сжигания газа; д) способу подвода воздуха; е) конструктив­ным особенностям и т. д.

Диффузионные горелки. У них весь необходимый воздух прите­кает к пламени из окружающей атмосферы. Эти горелки малочув­ствительны к колебанию давления газа, имеют большой диапазон регулирования, но требуют значительного объема топочной камеры

Я завершения процесса горения. Это объясняется малой ско­ростью перемешивания газа с воздухом, что приводит к увеличе­нию длины факела. Для газов с большой теплотой сгсрания, тре­бующих для полного сжигания больших количеств воздуха, такие горелки применяются редко.

2 А. с. Иссерлин

Инспекционные горелки. Образование газовоздушной смеси ча­стично или полностью происходит внутри самой горелки, поэтому они делятся на горелки частичного-и полного смешения. У горелок полного смешения горение завершается в минимальном объеме. В горелках частичного смешения только часть воздуха, необходи­мого для горения, поступает внутрь горелки в качестве первич­ного, а остальной воздух (вторичный) поступает к горелке извне. В этом случае процесс смешения затягивается и факел получается более длинным. Поступление воздуха и образование газовоздуш­ной смеси в инжекционных горелках происходит подсасыванием (эжектированием) воздуха за счет энергии струи газа.

Инжекционная горелка (рис. 3) состоит из четырех основных частей: газового сопла, смесителя, горелочного насадка и регуля­тора первичного воздуха.

Соплом называют калиброванное отверстие, через которое го­рючий газ подается в горелку. Оно выполняет две задачи: пропу­скает в горелку определенное количество газа и преобразовывает потенциальную энергию газа в кинетическую энергию газовой струи, причем скорость истечения газа из сопла получается до­вольно значительной. Так, перепад давления в сопле 150 мм вод. ст. создает скорость вытекающей струи порядка 50 м/сек.

Основным размером, характеризующим сопло, является его диаметр. Диаметр сопла должен строго соответствовать расчетным данным, так как от этого зависят производительность горелки и ее инжекционная способность. Сопло придает вытекающей струе определенную форму и направление.

Смеситель горелки служит для смешения газа с воздухом, т. е. получения однородной газовоздушной смеси, и выравнивания ско­рости по сечению горелки. Смесители в зависимости от типа го­релки выполняются либо в виде системы, состоящей из инжектора, цилиндрического горла и диффузора, либо в виде цилиндрической трубы.

Инжектор расширяющейся частью обращен к соплу. При исте­чении из сопла газа с большой скоростью в инжекторе создается разрежение, за счет которого происходит подсасывание воздуха из окружающей атмосферы. Воздух, поступающий в горелку, смеши­

Вается с газом, при этом скорость по сечению инжектора распреде­ляется весьма неравномерно.

Для выравнивания скорости потока газовоздушной смеси по сечению служит средняя цилиндрическая часть смесителя - горло. Оно является самой узкой его частью. Диаметр горла - суще­ственный фактор для инжекционных горелок. От величины отноше­ния диаметра горла к диаметру сопла зависит коэффициент ин- жекции горелки, т. е. количество воздуха, засасываемого через смеситель. Если, например, коэффициент эжекции А равен 8,0, то это значит, что на каждый кубометр газа горелка эжектирует

8,0 м3 воздуха. Следовательно, коэффициент избытка воздуха опре­делится как отношение коэффициента эжекции к количеству воз­духа, теоретически необходимому для горения, т. е.

Диффузор служит для преобразования части скоростного на­пора потока в статический, необходимый для преодоления после­дующего сопротивления горелки. В диффузоре заканчивается сме­шение газа с воздухом, и на выходе из него наблюдается полное выравнивание концентраций по сечению.

Насадок горелки предназначен для выдачи газовоздушной смеси и может иметь различную форму. Он часто конструктивно совмещается со стабилизатором (например, в пластинчатом или кольцевом стабилизаторе). Иногда горелка крепится насадком к газовому прибору или топочной камере.

Регулятор первичного воздуха служит для регулирования коли­чества воздуха, поступающего в горелку. Наиболее часто он вы­полняется в виде воздушно-регулировочной шайбы или заслонки. Иногда он конструктивно совмещается с устройством для глуше­ния шума (например, у инжекционных горелок среднего давле­ния с пластинчатыми стабилизаторами конструкции Мосгазпро - екта).

Инжекционные горелки полного смешения рассчитываются обычно на работу с коэффициентом избытка воздуха 1,05-1,15. В инжекционных горелках частичного смешения коэффициент из­бытка первичного воздуха находится в пределах 0,3-0,6.

В инжекционных горелках полного смешения можно сжигать всю газовоздушную смесь на огнеупорных поверхностях, которые, накаляясь, дают концентрированное тепловое излучение. Эта раз­новидность инжекционных горелок называется горелками инфра­красного излучения.

Горелки с принудительной подачей воздуха. Весь необходимый Для горения воздух нагнетается вентилятором. Эти горелки часто называют также двухпроводными. На рис. 4 показаны схемы наи­более распространенных горелок с принудительной подачей воз­духа. Горелка на рис. 4,а имеет периферийную подачу газа, т. е. газ подается в виде струй в поперечный воздушный поток. В го­
релке на рис. 4, Б осуществляется центральная подача газа в поток воздуха.

В горелках с принудительной подачей воздуха для лучшего смешения газа с воздухом используются различные конструктив­ные приемы. Например, можно закручивать воздушный поток в специальных устройствах, разбивать поток газа на мелкие струи или подавать газ под углом к воздушному потоку.

В зависимости от конструкции горелки весь воздух может пода­ваться в качестве первичного либо часть его как первичный, часть - как вторичный.

Рис, 4. Принципиальная схема горелки с принудительной подачей воздуха. а - периферийная; б - центральная подача газа.

Комбинированные горелки. В них возможно поочередное сжига­ние нескольких видов топлива. Существуют горелки, рассчитанные на сжигание трех видов топлива. Некоторые конструкции комбини­рованных горелок допускают одновременное сжигание двух видов топлива. Более широкое распространение получили пылегазовые и газомазутные горелки.

Из-за отсутствия нормативных данных на газовые горелки при­ходится оценивать их качество по определенным требованиям, ко­торые сводятся к следующему:

1) горелки должны обеспечивать полное сжигание газа при минимальном избытке воздуха;

2) горелки должны работать устойчиво (без отрыва и проскока пламени) в необходимом диапазоне изменения тепловых нагрузок;

3) конструкция и компоновка горелки должны полностью пре­дохранять ее детали от перегрева и обгорания;

4) потери напора в горелке по воздушному и газовому (для низкого давления) трактам должны быть минимальными;

5) при работе горелки на двух видах топлива оба топлива при раздельном их сжигании должны использоваться с максимальной
эффективностью, а переход с одного топлива на другое осуществ­ляться в короткий срок;

6) горелки должны быть просты в изготовлении, надежны и безопасны в эксплуатации, удобны для ремонта и осмотра.

Газовая горелка (горелка) - устройство, обеспечивающее подачу определённого количества горючего газа и окислителя (воздуха или кислорода), создание условий смешения их, транспортировку образовавшейся смеси к месту сжигания и сгорание газа. Есть горелки, у которых к месту сгорания подается только газ или газ и воздух, но без их предварительного смешения внутри горелки.

Требования, предъявляемые к горелкам:

Создание условий для полного сгорания газа с минимальными избытком воздуха и выходом вредных веществ в продуктах сгорания;

Обеспечение необходимой теплопередачи и максимального использования теплоты газового топлива;

Наличие пределов регулирования, не меньших, чем требуемое изменение тепловой мощности агрегата;

Отсутствие сильного шума, уровень. которого не должен превышать 85 дБ;

Простота конструкции, удобство ремонта и безопасность в эксплуатации;

Возможность применения автоматики регулирования и безопасности;

Соответствие современным требованиям промышленной эстетики.

В соответствии с ГОСТ 21204-97* по способу подачи воздуха и коэффициенту избытка первичного воздуха α1 горелки могут быть разделены на диффузионные (α1 = 0), инжекционные (α1 > 1 и α1 < 1), с принудительной подачей воздуха (дутьевые). Приведённая классификация, не являясь исчерпывающей, удобна своей простотой и привычностью, а также тем, что она характеризует основные признаки распространённых горелок.

Кроме того выделяют:

Предварительного полного смешения - газовая горелка на котел данного типа смешивает воздух непосредственно перед выходным отверстием.

Неполного предварительного смешения.

Газовые атмосферные горелки для котлов. Принцип действия похож на инжекционное оборудование, но отличие заключается в том, что обогащение кислородом происходит частично.

Рекуперативная. Схема работы такого узла основана на использовании рекуператора, прибора основным предназначением является подогрев газа и воздуха перед смешением.



Регенеративная. Практически то же самое что и рекуперативная, но нагрев происходит с помощью регенератора. Воздух и газ поступают в него и достигают заданной температуры, после чего поступают в топку.

Надувная. Воздух поступает в топку принудительно с помощью вентилятора, после смешивания.

Диффузионные горелки - это наиболее простые устройства, представляющие собой трубу с просверленными отверстиями. Газ вытекает из отверстий, а необходимый для горения воздух (в качестве вторичного) притекает полностью из окружающей среды. На диффузионных горелках процессы смешения газа с воздухом и горение совершаются параллельно на выходе газа из горелки.

Особенности диффузионных горелок:

Обеспечение сжигания газа по диффузионному принципу;

Длинное пламя со сравнительно невысокой температурой (при использовании в качестве топлива углеводородных газов пламя желто-белого цвета. В верхней части факела появляются сажистые частицы - копоть);

Наличие в продуктах сгорания несгоревших частиц топлива (химическая неполнота сгорания, или химический недожог, особенно при сжигании высококалорийных газов);

Необходимость иметь большой объем топочной камеры.

Достоинствами горелок этого типа являются малогабаритность и простота конструкции, удобство и безопасность эксплуатации, высокая устойчивость пламени без проскока и отрыва, высокая степень черноты пламени, широкий диапазон регулирования тепловой мощности и др. К недостаткам горелок относятся повышенный по сравнению с другими видами горелок коэффициент избытка воздуха, ухудшение условий догорания газа и выделение при сжигании углеводородных газов продуктов неполного сгорания.

Инжекционные горелки – это горелки, у которых необходимый для горения воздух поступает полностью (α1 > 1) или частично (α1 < 1) в качестве первичного, а подача его осуществляется за счет кинетической энергии струи газа, вытекающего из сопла. У этих горелок процессы смешения газа с воздухом и горения полностью или частично разделены. Инжекционные горелки обеспечивают хорошее смешение газа с воздухом. В зависимости от коэффициента избытка первичного воздуха α1 они делятся на две группы: с α1 > 1 и α1 < 1.

Газ, вытекая из сопла с большой скоростью за счет кинетической энергии струи, засасывает в инжектор из окружающего пространства воздух в количестве, необходимом для полного сгорания газа. Интенсивное смешение газа с воздухом осуществляется в горловине и завершается в диффузоре, в котором одновременно происходит повышение статического давления за счет плавного снижения скорости газовоздушного потока. Выравнивание скоростей происходит в конфузорном огневом насадке, где на выходе скорость смеси за счет повышения статического давления доводится до обеспечивающей устойчивую работу горелки в заданном диапазоне регулирования ее тепловой мощности. Количество поступающего воздуха в горелку может изменяться при помощи регулятора первичного воздуха, обычно имеющего вид шайбы, вращающейся на резьбовой поверхности сопла.

Промышленные газовые горелки имеют различную конструкцию и подразделяются на два основных класса:

Класс 1:

I) - По месту смешения газа с воздухом:

  • внешнее - после выхода топлива и воздуха из горелки (пламенные горелки);
  • внутреннее частичное или полное (пламенные горелки);
  • предварительное смешение до поступления в горелку (беспламенные горелки).

2) - По давлению газа:

  • низкого давления (до 5 кПа);
  • среднего давления (до 300 кПа);
  • высокого давления (более 300 кПа).

3) - По месту подвода газа и воздуха:

  • одноподводные (однопроводные);
  • двухподводные (двухпроводные) .

4 - По форме выходного сечения:

  • круглые;
  • щелевые.

5) - По виду сжигаемого газа:

  • для низкокалорийных газов;
  • для среднекалорийных газов;
  • для высококалорийных газов.

6) - По методу подачи воздуха и организации перемешивания:

  • предварительного перемешивания;
  • параллельная подача.

7) - По количеству подаваемого первичного воздуха:

  • диффузионные ;
  • атмосферные;
  • смесительные.

  • низкого давления;
  • высокого давления;

2. Горелки инжекционные однопроводные:

  • низкого давления с частичным предварительным смешением газа и воздуха - так называемые атмосферные горелки ;
  • низкого давления с полным предварительным смешением (используются для низкокалорийных и среднекалорийных газов);
  • среднего давления с полным смешением газов (используются для низкокалорийных, среднекалорийных газов и высококалорийных газов).

3. Горелки инжекционные двухпроводные:

  • среднего давления с полным предварительным смешением;
  • низкого давления с полным предварительным смешением.

4. Горелки двухпроводные дутьевые:

  • низкого давления полного внутреннего смешения;
  • низкого давления внешнего сешения;
  • низкого давления внутренне-внешнего смешения;
  • среднего давления полного внутреннего смешения;
  • среднего давления внешнего сешения;
  • среднего давления внутренне-внешнего смешения;

Лит.: Стаскевич Н. Л., Справочное руководство по газоснабжению, Л., 1960: Михеев В. П., Газовое топливо и его сжигание, Л., 1966; Использование газа в промышленных печах, Л., 1967

Классификация газовых горелок
Газовая горелка - устройство, обеспечивающее подачу определенного количества горючего газа и окислителя (воздуха или кислорода), создание условий смешения их, транспортировку образовавшейся смеси к месту сжигания и сгорания газа. Есть горелки, у которых к месту сгорания подается только газ или газ и воздух, но без их предварительного смешения внутри горелки.

Требования, предъявляемые к горелкам:

· создание условий для полного сгорания газа с минимальными избытком воздуха и выходом вредных веществ в продуктах сгорания;

· обеспечение необходимой теплопередачи и максимального использования теплоты газового топлива;

· наличие пределов регулирования, не меньших чем требуемое изменение тепловой мощности агрегата;

· отсутствие сильного шума, уровень которого не должен превышать 85 дБ;

· простота конструкции, удобство ремонта и безопасность эксплуатации;

· возможность применения автоматики регулирования и безопасности;

· соответствие современным требованиям промышленной эстетики.

Основные функции газовых горелок: подача газа и воздуха к фронту горения газа, смесеобразование, стабилизация фронта воспламенения, обеспечение требуемой интенсивности процесса горения газа.

По методу сжигания газа все горелки можно разделить на три группы:

· без предварительного смешения газа с воздухом - диффузионные;

· с неполным предварительным смешением газа с воздухом - диффузионно-кинетические;

· с полным предварительным смешением газа с воздухом - кинетические.

Кроме того, горелки можно классифицировать по способу подачи воздуха, расположению горелки в топочном пространстве, излучающей способности горелки, давлению газа.

Широкое распространение имеет классификация горелок по способу подачи воздуха. По этому признаку горелки подразделяют следующим образом:

· бездутьевые, у которых воздух поступает в топку за счет разрежения в ней;

· инжекционные, в которых воздух засасывается за счет энергии струи газа;

· дутьевые, у которых воздух подается в горелку или топку с помощью вентилятора.

Горелки могут работать при различных давлениях газа: низком - до 5000 Па, среднем - от 5000 Па до 0,3 МПа и высоком - более 0,3 МПа. Наибольшее распространение имеют горелки, работающие на низком и среднем давлениях газа.

Важная характеристика горелки - ее тепловая мощность, кДж/ч:

Где QН - низшая теплотворная способность газа, кДж/м3; VЧ - часовой расход газа горелкой, м3/ч.

Различают максимальную, минимальную и номинальную тепловые мощности газовых горелок. Максимальная тепловая мощность достигается при длительной работе горелки с большим расходом газа и без отрыва пламени. Минимальная тепловая мощность возникает при устойчивой работе горелки при наименьших расходах газа без проскока пламени. Номинальная тепловая мощность горелки соответствует режиму работы с номинальным расходом газа, т. е. расходу, обеспечивающему наибольший КПД при наибольшей полноте сжигания газа. В паспортах горелок указывают номинальную тепловую мощность.

Максимальная тепловая мощность горелки должна превышать номинальную не более чем на 20 %. Если номинальная тепловая мощность горелки по паспорту 10000 кДж/ч, то максимальная должна быть 1 2 000 кДж/ч.

Еще одна важная характеристика горелки - предел регулирования тепловой мощности п = 2 ... 5:

N = Qr min / Qr max,

Где Qr min - минимальная тепловая мощность горелки; Qr max - максимальная тепловая мощность горелки.

В эксплуатации находится большое количество горелок различных конструкций. Общие требования для всех горелок: обеспечение полноты сгорания газа, устойчивость при изменениях тепловой мощности, надежность в эксплуатации, компактность, удобство при обслуживании.

Существует много разных классификаций газогорелочных устройств, которые мы можем видеть в Таблице 1.
Таблица 1. Классификация газовых горелок

Классификационный признак

Характеристика классификационного признака

Способ подачи компонентов

Подача воздуха за счет свободной конвекции

Подача воздуха за счет разрежения в рабочем пространстве

Инжекция воздуха газом

Принудительная подача воздуха от постороннего источника

Принудительная подача воздуха от встроенного вентилятора (блочные горелки)

Принудительная подача воздуха за счет давления газа (турбинные горелки)

Инжекция газа воздухом (принудительная подача воздуха, инжектирующего газ)

Принудительная подача газовоздушной смеси от постороннего источника

Степень подготовки горючей смеси

Без предварительного смешения

С частичной подачей первичного воздуха

С неполным предварительным смешением

С полным предварительным смешением

Скорость истечения продуктов сгорания, м/с

До 20 (низкая)

Св. 20 до 70 (средняя)

Св. 70 (высокая, скоростные горелки)

Характер потока, истекающего из горелки

Прямоточный

Закрученный неразомкнутый

Закрученный разомкнутый

Номинальное давление газа перед горелкой, Па

До 5000 (низкое)

Среднее давление (до критического перепада давлений)

Высокое давление (критический или сверхкритический перепад давлений)

Возможность регулирования характеристик факела

С нерегулируемыми характеристиками факела

С регулируемыми характеристиками факела

Необходимость регулирования коэффициента избытка воздуха

С нерегулируемым (минимальным или оптимальным) коэффициентом избытка воздуха

С регулируемым (переменным или повышенным) коэффициентом избытка воздуха

Локализация зоны горения

В огнеупорном туннеле или в камере горения горелки

Н поверхности катализатора, в слое катализатора

В зернистой огнеупорной массе

На керамических или металлических насадках

В камере горения агрегата или в открытом пространстве

Возможность использования тепла продуктов сгорания

Без подогрева воздуха и газа

С подогревом в автономном рекуператоре или регенераторе

С подогревом воздуха во встроенном рекуператоре или регенераторе

С подогревом воздуха и газа

Степень автоматизации

С ручным управлением

Полуавтоматические

Автоматические

Диффузионные горелки
В диффузионные горелки воздух, необходимый для сгорания газа, поступает из окружающего пространства к фронту факела за счет диффузии.

Такие горелки применяют обычно в бытовых приборах. Их можно использовать также при увеличении расхода газа, если необходимо распределить пламя по большой поверхности. Во всех случаях газ подается в горелку без примеси первичного воздуха и смешивается с ним за пределами горелки. Поэтому иногда эти горелки называют горелками внешнего смешения.

Наиболее простые по конструкции диффузионные горелки (рис. 1) представляют собой трубу с высверленными отверстиями. Расстояние между отверстиями выбирают с учетом скорости распространения пламени от одного отверстия к другому. Эти горелки имеют небольшие тепловые мощности, и их применяют при сжигании природных и низкокалорийных искусственных газов под небольшими водонагревательными устройствами.

Рис. 1. Возможные варианты диффузионных горелок
К промышленным горелкам диффузионного типа относят подовые щелевые горелки (рис. 2). Обычно они представляют собой трубу диаметром до 50 мм, в которой просверлены отверстия диаметром до 4 мм в два ряда. Коллектор горелки размещают над колосниковой решеткой в кирпичном канале. Канал представляет собой щель в поде котла, откуда и название горелок - подовые щелевые.

Рис. 2. Подовая диффузионная горелка:

Регулятор воздуха; 2 - горелка; 3 - смотровое окно; 4 - центрирующий стакан; 5- горизонтальный тоннель; 6- выкладка из кирпича; 7 - колосниковая решетка
Из горелки 2 газ выходит в топку, куда из-под колосников 7 поступает воздух. Газовые струйки направляются под углом к потоку воздуха и равномерно распределяются по его сечению. Процесс смешения газа с воздухом осуществляется в специальной щели, выполненной из огнеупорного кирпича. Благодаря такому устройству усиливается процесс смешивания газа с воздухом и обеспечивается устойчивое зажигание газовоздушной смеси.

Колосниковую решетку закладывают огнеупорным кирпичом и оставляют несколько щелей, в которых размещают трубы с просверленными отверстиями для выхода газа. Воздух под колосниковую решетку подается вентилятором или в результате разрежения в топке. Огнеупорные стенки щели - стабилизаторы горения - предотвращают отрыв пламени и одновременно повышают процесс теплоотдачи в топке.

При раздельной подаче газа и воздуха в диффузионных горелках можно подогревать воздух, что обеспечивает получение высоких температур в топке.

Инжекционные горелки
Горелки, в которых образование газовоздушной смеси происходит за счет энергии струи газа, называют инжекционными . Основной элемент инжекционной горелки - инжектор, подсасывающий воздух из окружающего пространства внутрь горелок.
В зависимости от количества инжектируемого воздуха горелки могут быть с неполной инжекцией воздуха и с полным предварительным смешением газа с воздухом.

Горелки с неполной инжекцией воздуха. К фронту горения поступает только часть необходимого для сгорания воздуха, остальной воздух поступает из окружающего пространства. Такие горелки работают при низком давлении газа. Их называют инжекционными горелками низкого давления (рис. 3, а).

Основными частями инжекционных горелок являются регулятор первичного воздуха, форсунка, смеситель и коллектор (см. рис. 3).

Рис. 3. Инжекционные атмосферные газовые горелки:

А - низкого давления; б - горелка для чугунного котла; 1 - форсунка; 2 - инжектор; 3 - конфузор; 4 - диффузор; 5 - коллектор; 6 - отверстия; 7 - регулятор первичного воздуха
Регулятор первичного воздуха 7 представляет собой вращающийся диск или шайбу и регулирует количество первичного воздуха, поступающего в горелку. Форсунка 1 служит для превращения потенциальной энергии давления газа в кинетическую, т. е. для придания газовой струе такой скорости, которая обеспечивает подсос необходимого воздуха. Смеситель горелки состоит из трех частей: инжектора, конфузора и диффузора. Инжектор 2 создает разрежение и подсос воздуха. Самая узкая часть смесителя - конфузор 3, выравнивающий струю газовоздушной смеси. В диффузоре 4 происходят окончательное перемешивание газовоздушной смеси и увеличение ее давления за счет снижения скорости.

Из диффузора газовоздушная смесь поступает в коллектор 5, который и распределяет ее по отверстиям 6. Форма коллектора и расположение отверстий зависят от типа горелок и их назначения.

Распределительный коллектор горелок емкостных водонагревателей имеет форму окружности; у горелок проточных водонагревателей коллектор состоит из параллельно расположенных трубок; у агрегатов, имеющих удлиненную топку, коллектор удлиненной формы; у горелок для чугунного котла (рис. 3, б) коллектор в виде прямоугольника с большим числом мелких отверстий.

Инжекционные горелки низкого давления имеют ряд положительных качеств, благодаря которым их применяют в бытовых газовых приборах, а также в газовых приборах для предприятий общественного питания и других коммунально-бытовых потребителей газа. Инжекционные горелки используют также в чугунных отопительных котлах.

Основные преимущества инжекционных горелок низкого давления: простота конструкции, устойчивая работа горелок при изменении нагрузок; надежность и простота обслуживания; бесшумность работы; возможность полного сжигания газа и работа на низких давлениях газа; отсутствие подачи воздуха под давлением.

Важная характеристика инжекционных горелок неполного смешения - коэффициент инжекции - отношение объема инжектируемого воздуха к объему воздуха, необходимого для полного сгорания газа. Так, если для полного сгорания 1 м3 газа необходимо 10 м3 воздуха, а первичный воздух составляет 4 м3, то коэффициент инжекции равен 4: 10 = 0,4.

Характеристикой горелок является также кратность инжекции - отношение первичного воздуха к расходу газа горелкой. В данном случае, когда на 1 м3 сжигаемого газа инжектируется 4 м3 воздуха, кратность инжекции равна 4.

Достоинство инжекционных горелок - это их свойство саморегулирования, т.е. поддержание постоянной пропорции между количеством подаваемого в горелку газа и количеством инжектируемого воздуха при постоянном давлении газа.

Пределы устойчивой работы инжекционных горелок ограничены возможностями отрыва и проскока пламени. Это значит, что увеличить или уменьшить давление газа перед горелкой можно только в определенных пределах.

Горелки с полным предварительным смешением газа с воздухом . Инжекция всего воздуха, необходимого для полного сгорания газа, обеспечивается повышенным давлением газа. Горелки полного смешения газа работают в диапазоне давлений от 5000 Па до 0,5 МПа. Их называют инжекционными горелками среднего давления и применяют в основном в отопительных котлах и для обогрева промышленных печей. Тепловая мощность горелок обычно не превышает 2 МВт. Основные трудности повышения их мощности - сложность борьбы с проскоком пламени и громоздкость смесителей.
Эти горелки дают малосветящийся факел, что уменьшает количество радиационной теплоты, передаваемой нагреваемым поверхностям. Для увеличения количества радиационной теплоты эффективно применение в топках котлов и печей твердых тел, которые воспринимают теплоту от продуктов горения и излучают ее на тепловоспринимающие поверхности. Эти тела называют вторичными излучателями. В качестве вторичных излучателей используют огнеупорные стенки тоннелей, стенки топок, а также специальные дырчатые перегородки, установленные на пути движения продуктов сгорания.
Горелки с полным предварительным смешением газа с воздухом подразделяют на два типа: с металлическими стабилизаторами и огнеупорными насадками.
Инжекционная горелка конструкции Казанцева (ИГК) состоит из регулятора первичного воздуха, форсунки, конфузора, смесителя, насадка и пластинчатого стабилизатора (рис. 4).

Рис. 4. Инжекционная горелка ИГК:

Стабилизатор; 2 - насадок; 3 - конфузор; 4 - форсунка; 5 - регулятор первичного воздуха
Регулятор первичного воздуха 5 горелки одновременно выполняет функции глушителя шума, который создается за счет повышенных скоростей движения газовоздушной смеси. Пластинчатый стабилизатор и проскока пламени в широком диапазоне 7 обеспечивает устойчивую работу горелки без отрыва и проскока пламени в широком диапазоне нагрузок. Стабилизатор состоит из стальных пластин толщиной 0,5 мм при расстоянии между ними 1,5 мм. Пластины стабилизатора стягивают между собой стальными стержнями, которые на пути движения газовоздушной смеси создают зону обратных токов горячих продуктов сгорания и непрерывно поджигают газовоздушную смесь.
В горелках с огнеупорными насадками природный газ сгорает с образованием малосветящегося пламени. В связи с этим передача теплоты излучением от факела горящего газа оказывается недостаточной. В современных конструкциях газовых горелок значительно повысилась эффективность использования газа. Малая светимость факела газа компенсируется излучением раскаленных огнеупорных материалов при сжигании газа методом беспламенного горения.

Газовоздушная смесь у этих горелок приготовляется с небольшим избытком воздуха и поступает в раскаленные огнеупорные каналы, где она интенсивно нагревается и сгорает. Пламя не вы ходит из канала, поэтому такой процесс сжигания газа называется беспламенным. Это название условное, так как в каналах пламя имеется.

Газовоздушная смесь подогревается от раскаленных стенок канала. В местах расширения каналов и вблизи от плохо обтекаемых тел создаются зоны задержки горячих продуктов сгорания. Такие зоны - устойчивые источники постоянного подогрева и зажигания газовоздушной смеси. На рис. 5 показана беспламенная панельная горелка. Поступающий в сопло 5 из газопровода 7 газ инжектирует необходимое количество воздуха, регулируемое регулятором первичного воздуха 6. Образовавшаяся газовоздушная смесь через инжектор 4 поступает в распределительную камеру 3, проходит по ниппелям 2 и поступает в керамические тоннели 1. В этих тоннелях происходит сжигание газовоздушной смеси. Распределительная камера 3 от керамических призм 8 теплоизолирована слоем диатомовой крошки, что сокращает теплоотвод из реакционной зоны.

Беспламенное сжигание газа имеет следующие преимущества: полное сгорание газа; возможность сжигания газа при малых избытках воздуха; возможность достижения высоких температур горения; сжигание газа с высоким тепловым напряжением объема горения; передача значительного количества теплоты инфракрасными лучами.

Существующие конструкции беспламенных горелок с огнеупорными насадками по конструкции их огневой части подразделяют на горелки с насадками, имеющие каналы неправильной геометрической формы; горелки с насадками, имеющие каналы правильной геометрической формы; горелки, у которых пламя стабилизируется на огнеупорных поверхностях топки.

Рис. 5. Беспламенная панельная горелка:

Тоннель; 2 - ниппель; 3 - распределительная камера; 4 - инжектор; 5 - сопло; 6 - регулятор воздуха; 7 - газопровод; 8 - керамические призмы
Наиболее распространены горелки с насадками правильной геометрической формы. Огнеупорные насадки таких горелок состоят из керамических плиток размером 65 х 45 х 12 мм. Беспламенные горелки называют также горелками инфракрасного излучения.

Все тела - источники теплового излучения, возникающего за счет колебательного движения атомов. При излучении тепловая энергия веществ превращается в энергию электромагнитных волн, которые распространяются от источника со скоростью, равной скорости света. Эти электромагнитные волны, распространяясь в окружающем пространстве, наталкиваются на различные предметы и легко превращаются в тепловую энергию. Величина ее зависит от температуры излучающих тел. Каждой температуре соответствует определенный интервал длин волн, излучаемых телом. В данном случае передача теплоты излучением происходит в инфракрасной области спектра, а горелки, работающие по этому принципу, называются горелками инфракрасного излучения (рис. 6).

Через сопло 4 (см. рис. 6, а) газ поступает в горелку и инжектирует весь воздух, необходимый для полного сгорания газа. Из горелки газовоздушная смесь поступает в сборную камеру 6 и далее направляется в огневые отверстия керамической плитки 2. Во избежание проскока пламени диаметр огневых отверстий должен быть меньше критической величины и составлять 1,5 мм. Выходящая из огневых камер газовоздушная смесь поджигается при малой скорости ее вылета, чтобы избежать отрыва пламени. В дальнейшем скорость вылета газовоздушной смеси можно увеличить (полностью открыть кран), так как керамические плитки нагреваются до 1000°С и отдают часть теплоты газовоздушной смеси, что приводит к увеличению скорости распространения пламени и предотвращению его отрыва.

Горелки с принудительной подачей воздуха

У горелок с принудительной подачей воздуха процесс образования газовоздушной смеси начинается в самой горелке и завершается в топке. Газ сгорает коротким и несветящимся пламенем. Воздух, необходимый для сгорания газа, подается в горелку принудительно с помощью вентиляторов. Подача газа и воздуха производится по отдельным трубам.

Горелки с принудительной подачей воздуха часто называют двухпроводными и смесительными, так как в них происходит полное перемешивание газовоздушной смеси.

Рис. 7. Горелка с принудительной подачей воздуха низкого давления:

Сопло; 2 - корпус; 3 - фронтальная плита; 4 - керамический тоннель
Наиболее распространенные конструкции этих горелок работают на низком давлении газа и воздуха (рис. 7). Однако некоторые конструкции можно использовать и при среднем давлении газа.

Горелки предназначены для установки в топках котлов и других агрегатах с небольшим объемом топки, а также в нагревательных и сушильных печах.

Газ давлением до 1200 Па поступает в сопло 1 и выходит из него через восемь отверстий диаметром 4,5 мм. Отверстия расположены под углом 30° к оси горелки. В корпусе 2 горелки устроены специальные лопатки, придающие потоку воздуха вращательное движение. Таким образом, газ в виде мелких струек пересекается в закрученном потоке воздуха и создается хорошо перемешанная газовоздушная смесь. Горелка заканчивается керамическим тоннелем 4, имеющим запальное отверстие.

Основные достоинства горелок: возможность сжигания большого количества газа; широкий диапазон регулирования производительности горелок; возможность подогрева воздуха и газа до температур, превышающих температуру воспламенения.

В существующих разнообразных конструкциях горелок интенсификация процесса образования газовоздушной смеси достигается следующими способами: расчленением потоков газа и воздуха на мелкие потоки, в которых проходит смесеобразование; подачей газа в виде мелких струек под углом к потоку воздуха; закручиванием потока воздуха различными приспособлениями, встроенными внутрь горелок.

Комбинированные горелки

Горелки, работающие одновременно или раздельно на газе и мазуте или на газе и угольной пыли, называются комбинированными. Их применяют при перебоях в подаче газа, когда необходимо срочно перейти на другой вид топлива; когда газовое топливо не обеспечивает необходимого температурного режима топки; подача газа на данный объект производится только в определенное время (ночью) для выравнивания суточной неравномерности газопотребления.

Наибольшее распространение получили газомазутные горелки (рис. 8) с принудительной подачей воздуха. Горелка состоит из газовой, воздушной и жидкостной частей. Газовая часть представляет собой полое кольцо, имеющее штуцер для подвода газа и восемь трубочек для распыления газа.

Жидкостная часть горелки состоит из мазутной головки и внутренней трубки, заканчивающейся форсункой 1. Подача мазута в горелку регулируется вентилем. Воздушная часть горелки состоит из корпуса б, завихрителя 3, воздушной заслонки 5, с помощью которой можно регулировать подачу воздуха. Завихритель служит для лучшего перемешивания струи мазута с воздухом. Давление воздуха 2...3 кПа, давление газа до 50 кПа, а давление мазута до 0,1 МПа.

Применение комбинированных горелок дает более высокий эффект, чем одновременное использование газовых горелок и мазутных форсунок или газовых и пылеугольных горелок.

Рис. 8. Комбинированная газомазутная горелка с принудительной подачей воздуха:

Мазутная форсунка; 2 - воздушная камера; 3 - завихритель; 4 - трубки выхода газа; 5 - воздушная регулировочная заслонка; 6 - корпус
Комбинированные горелки необходимы для надежной и бесперебойной работы газоиспользующих установок крупных промышленных предприятий, электростанций и других потребителей, для которых перерыв в работе недопустим.

В качестве резервного топлива служит мазут, в этом случае в центральной трубе устанавливается мазутная форсунка. При переводе горелки на газовое топливо мазутную форсунку заменяют кольцевым каналом, по которому подается газовое топливо.

В центральной части канала установлена труба с чугунным наконечником 2. В наконечнике 24 косые щели, через которые выходит газ, пересекающийся с потоком закрученного воздуха, выходящего из улитки 1. В усовершенствованных конструкциях горелок в наконечнике вместо щелей предусмотрено 115 отверстий диаметром 7 мм. В результате скорость выхода газа увеличилась почти в два раза (150 м/с).

В новых конструкциях горелки применяется периферийная подача газа, при которой газовые струйки, имеющие более высокую скорость, чем воздушные, пересекают закрученный поток воздуха, движущийся со скоростью 30 м/с, под прямым углом. Такое взаимодействие потоков газа и воздуха обеспечивает быстрое и полное их перемешивание, в результате чего газовоздушная смесь сгорает с минимальными потерями.

Технические характеристики горелок приведены в Таблице 2.
Таблица 2. Технические характеристики горелок БГ-Т

Параметры

Виды горелок в зависимости от мощности

Тепловая мощность в режиме «малый огонь», МВт

Присоединительное давление газа перед горелкой, Па

Номинальное давление в камере сгорания теплового агрегата, Па

Номинальное разрежение в камере сгорания газа, Па

Низшая теплота сгорания газа, МДж/м3, не менее

Низшее число Воббе, МДж/м3

41,2. ..54,5

Температура окружающей среды, °С, не более

Минимальный коэффициент избытка воздуха при номинальной тепловой мощности, не более

Допускаемое увеличение минимального коэффициента избытка воздуха в диапазоне рабочего регулирования тепловой мощности, не более

Мощность привода вентилятора, кВт, не более

Блочные газовые горелки БГ-Г (рис. 10) предназначены для использования в камерах сгорания тепловых агрегатов различного назначения (паровые и водогрейные котлы, печи, асфальтосмесительные установки и т.д.). В качестве топлива в горелках используют природный газ.

Во входной части корпуса 7 расположен воздухозаборник 14, в котором на оси 13 установлена воздушная заслонка 75с приводом. Привод воздушной заслонки состоит из электромагнита 17 и системы рычагов, связанных с осью заслонки. К корпусу 1 крепится электродвигатель 25, на вал которого насажен центробежный вентилятор 24.

Рис. 10. Горелка блочная газовая БГ-Г:

Корпус; 2 - глазок смотровой; 3 - генератор импульсный; 4 - датчик реле давления воздуха; 5 - палец быстросъемный; 6 - провод высоковольтный; 7 - насадок газовый; 8 - переходник (смеситель) с соплом; 9 - завихритель; 10 - кольцо уплотнительное; 11 - прокладка; 12 - разводка газовая; 13 - ось; 14 - воздухозаборник; 15 - заслонка воздушная; 16 - кронштейн; 17 - электромагнит; 18 - пульт управления; 19 - клапан электромагнитный; 20 - датчик ионизационный (электрод контрольный); 21 - вентиль газовый; 22 - датчик-реле давления газа; 23 - кран; 24 - вентилятор; 25 - электродвигатель; 26 - реле; 27 - электрод нулевой; 28 - электрод запальный

К фланцу корпуса крепится смеситель 8, внутри которого установлен газовый насадок 7с завихрителем 9 и электродами 20, 27 и 28. К торцу смесителя крепится горловина.

Для доступа к газовому насадку и подводящим высоковольтным проводам 6 электродов смеситель при помощи двух быстросъемных пальцев 5 может откидываться в одну или другую сторону.

Газовый насадок 7 соединен с газовой разводкой 12, на которой установлена в зависимости от типоразмера горелки необходимая газовая арматура. Места соединений газового насадка 7 с газовой разводкой 12 и газовой разводки со смесителем горелки уплотнены уплотнительным кольцом 10 и прокладкой 11.

Управляют работой горелки с пульта управления 18, который крепится к корпусу с помощью кронштейна 16.

Воздух в горелку подается электровентилятором. Количество воздуха, поступающего в зону горения, регулируют воздушной заслонкой 15.

При номинальной тепловой мощности горелки электромагнит обесточен и воздушная заслонка открыта (положение 0 на лимбе воздухосборника). В режиме «малый огонь» на электромагнит подается питание, он срабатывает, и воздушная заслонка, поворачиваясь на оси, перекрывает воздухосборник (положение 3 на лимбе воздухосборника).

Газ поступает по газовой разводке 12 в газовый насадок 7 и через его газораздающие отверстия попадает в поток воздуха, закрученный завихрителем 9. Количество газа, подаваемого на горение, регулируют электромагнитными вентилями.

Газовоздушная смесь поджигается искрой, возникающей между запальным электродом 28 и газовым насадком 7 при подаче тока высокого напряжения от импульсного генератора 3.

Давление газа перед горелкой контролируют датчиком-реле 22, а давление воздуха для горения - датчиком-реле 4. Наличие пламени контролируют блоком контроля пламени, расположенным в пульте управления и получающим импульс от датчика контроля пламени 20. Для наблюдения за горением на корпусе горелки имеется смотровой глазок 2.

Режим продувки. Включают электровентилятор, подающий воздух в горелку. Привод обесточен, заслонка 15 полностью открыта, подается максимальное количество воздуха для обеспечения продувки. Электромагнитные вентили на газовой разводке обесточены, что препятствует подаче газа в горелку.

Режим розжига. По окончании продувки горелка переходит в режим розжига: на привод подается питание, он поворачивает ось 13 заслонки /5, уменьшая подачу воздуха для обеспечения розжига горелки. Одновременно включается клапан 19 (на горелках БГ-Г-0,5 и БГ-Г-0,65 включаются два электромагнитных вентиля 27), подавая газ в горелку, и импульсный генератор 3, подавая высокое напряжение на запальный электрод 28. Искра, возникающая между газовым насадком 7 и запальным электродом 28, поджигает газовоздушную смесь.

Режим розжига горелки одновременно является режимом «малый огонь».

Режим эксплуатации. При нормальном розжиге с появлением пламени и устойчивом горении дополнительно включается электромагнитный вентиль 21, отключается электромагнит 17, обеспечивая максимальное открытие воздушной заслонки 15. Горелка переходит в режим «большой огонь». Тепловую мощность регулируют с помощью регулятора температуры (для паровых котлов - давления пара, который при необходимости подает сигнал на пульт управления для изменения расхода газа и воздуха).

Горелка работает в режиме нормальной эксплуатации с трехступенчатым регулированием тепловой мощности.

Горелка БГ-Г-0,12 в зависимости от варианта изготовления работает в режиме трехступенчатого или двухступенчатого регулирования.
Автоматизация процессов сжигания газа
Свойства газового топлива и современные конструкции газовых горелок создают благоприятные условия для автоматизации процессов сжигания газа. Автоматическое регулирование процесса горения повышает надежность и безопасность эксплуатации газоиспользующих агрегатов и обеспечивает их работу в соответствии с наиболее оптимальным режимом.

В существующих газоиспользующих установках применяют системы частичной или комплексной автоматизации.

Современная комплексная газовая автоматика состоит из следующих основных систем: автоматики регулирования, автоматики безопасности, аварийной сигнализации, теплотехнического контроля.

Автоматика регулирования бытовых, коммунальных и промышленных газовых приборов и агрегатов предназначена для управления и регулирования процесса горения газа таким образом, чтобы газовые приборы и агрегаты работали на заданном режиме и обеспечивали оптимальный режим горения газа. Так, у емкостных водонагревателей поддерживается постоянная температура воды в баке, у паровых котлов - постоянное давление пара, у отопительных водогрейных котлов - температура воды в котле.

Автоматика безопасности прекращает подачу газа к горелкам газоиспользующих установок при нарушениях режима работы. При этом контролируются наиболее важные параметры:

Наличие пламени в топке. При отсутствии пламени в топке подача газа на горелку немедленно прекращается;

Давление газа на подводящем газопроводе. При изменении давления газа против установленного минимального и максимального значений подача газа прекращается;

Разрежение в топке. При понижении разрежения в топке до минимально допустимого подача газа прекращается;

Давление воздуха (при наличии соответствующих горелок). При падении давления воздуха до минимально допустимого подача газа прекращается;

Температура воды в котле. Если температура воды превышает допустимую норму, то подача газа прекращается;

Давление пара в котле. При повышении давления пара сверх установленного подача газа прекращается.

При отключении агрегатов подаются звуковой и световой сигналы. Контролируют также загазованность помещений, где установлены газовые приборы и агрегаты.

Приборы контроля и сигнализации дают возможность устанавливать дистанционное управление газоиспользующих установок.

Приборы теплотехнического контроля помогают обслуживающему персоналу вести технологический процесс в оптимальном режиме.

Степень автоматизации газоиспользующего агрегата зависит от конкретных условий его эксплуатации.

Список литературы
.Кязимов К.Г., Гусев в.Е. Основы газового хозяйства. - М.: Высш. шк., 2000.

Кязимов К.Г. Устройство и эксплуатации газового хозяйства. - М.: Высш. шк., 2004.

Кязимов К.Г. Справочник работника газового хозяйства. - М.: Высш. шк., 2006.

Стаскевич Н.Л., Северинец Г.Н., Вигдорчик Д.Я., Справочник по газоснабжению и использованию газа. - Л.: Недра, 1990.

ГОСТ 17356 - 71

ГОСТ 21204 - 83

Газовая горелка - это устройство для смешения кислорода с газообразным топливом с целью подачи смеси к выходному отверстию и сжигания её с образованием устойчивого факела. В газовой горелке газообразное топливо, подаваемое под давлением, смешивается в смесительном устройстве с воздухом (кислородом воздуха) и образовавшаяся смесь поджигается на выходе из смесительного устройства с образованием устойчивого постоянного пламени.

Газовые горелки обладают широким спектром достоинств. Конструкция газовой горелки очень проста. Ее запуск занимает доли секунды и работает такая горелка практически безотказно. Газовые горелки используются для отопительных котлов или промышленного применения.

Сегодня существует два основных вида газовых горелок , их разделение ведется в зависимости от используемого метода образования горючей смеси (состоящей из топлива и воздуха). Различают атмосферные (инжекторные) и наддувные (вентиляционные) устройства. В большинстве случаев первый вид является частью котла и входит в его стоимость, второй же вид чаще всего приобретается отдельно. Наддувная горелка газовая в качестве инструмента горения более эффективна, поскольку в них подача воздуха осуществляется специальным вентилятором (встроенным в горелку).

Назначениями газовых горелок являются:

– подача газа и воздуха к фронту горения;

– смесеобразование;

– стабилизация фронта воспламенения;

– обеспечение требуемой интенсивности горения.

Типы газовых горелок:

Диффузионная горелка – горелка, в которой топливо и воздух смешиваются при горении.

Инжекционная горелкагазовая горелка с предварительным смешиванием газа с воздухом, у которой одна из сред, необходимых для горения, подсасывается в камеру горения другой среды (синоним– эжекционная горелка)

Горелка с полым предварительным смешением – горелка, в которой газ смешивается полным объемом воздуха перед выходными отверстиями.

Большая группа разнообразных по конструкций и различных по производительности горелок относится к горелкам с незавершенным предварительным смешением газа с воздухом. У горелок этого типа процесс смесеобразования начинается в самой горелке и активно завершается в топочной камере. Вследствие этого газ сгорает коротким и несветящимся пламенем. В связи с тем что до выхода в топку, где начинается процесс горения, газовоздушная смесь частично была приготовлена, скорость горения определяется диффузионными и кинетическими факторами. Следовательно, у этих горелок осуществляется диффузионно-кинетический способ сжигания газа. Горелки рассмотренного типа состоят из систем раздельной подачи газа и всего воздуха, необходимого для горения, а также устройств, в которых начинается процесс смесеобразования. В топку поступает газовоздушная смесь, представляющая собой турбулентный поток с неравномерными полями концентраций горючего и окислителя в поперечном сечении. Попадая в зону высоких температур, смесь воспламеняется. Участки потока, в которых концентрация газа и воздуха находится в стехиометрическом соотношении, сгорают кинетическим способом, а зоны, в которых процесс смесеобразования не завершен, выгорают диффузионно. Процессом смешения в топке управляет смесительное устройство горелки, так как структуру потока и движение его отдельных частиц определяют условия его выхода из смесителя. Смешение газа и воздуха у этих горелок происходит в результате турбулентной диффузии, поэтому такие горелки называют горелками турбулентного смешения. Для повышения интенсивности процесса сжигания газа следует максимально интенсифицировать смеше ние газа с воздухом, так как смесеобразование является тормозящим звеном всего процесса. Интенсификации процесса смесеобразования достигают: закручиванием потока воздуха направляющими лопатками; тангенциальным подводом или устройством улиток; подачей газа в виде мелких струй под углом к потоку воздуха расчленением потоков газа и воздуха на мелкие потоки, в которых происходит смесеобразование. Горелки турбулентного смешения нашли широкое применение. Основными положительными качествами таких горелок являются: а) возможность сжигания большого количества газа при сравнительно небольших габаритах горелки (особенно важно для мощных котлов); б) широкий диапазон регулирования производительности горелки; в) возможность подогрева газа и воздуха до температур, превышающих температуру воспламенения, что имеет большое значение для некоторых высокотемпературных печей; г) сравнительно простое выполнение конструкций с комбинированным сжиганием топлива (газа - мазута, газа - угольной пыли). Недостатки рассматриваемых горелок: принудительная подача воздуха и сжигание газа с химической неполнотой, большей, чем при кинетическом горении. Горелки турбулентного смешения имеют различную производительность от 60 кВт до 60 МВт. Их используют для обогрева промышленных печей и котлов.

Горелки турбулентного смешения ГНП конструкции Теплопроекта производительностью 7 ... 250 м3/ч при давлении газа и воздуха 0,4 ... 2 кПа показаны на рис. 16.10. Горелки выпускают девяти типоразмеров с двумя типами наконечников газового сопла. Наконечник А обеспечивает короткофакельное сжигание, а наконечник Б создает удлиненный факел. Газ входит в горелку через патрубок и истекает с определенной скоростью из сопла. Воздух в горелку подают под давлением, перед входом в носик горелки он закручивается. Смешение газа с воздухом начинается внутри горелки при выходе газа из сопла и интенсифицируется закрученным потоком воздуха. При многоструйной подаче газа (с наконечником А) процесс образования смеси протекает быстрее и газ сгорает в коротком факеле. Горелку устанавливают совместно с керамическим туннелем, служащим стабилизатором горения. Горелки обеспечивают сжигание газа при отсутствии химической неполноты при коэффициенте избытка воздуха α= 1,05 ... 1,1. При давлении газа 4 кПа длина факела для горелок с наконечником типа А в зависимости от ипоразмера горелки изменяется от 0,6 до 2,3 м. Основные размеры серии горелок ГНП следующие: диаметр выходного отверстия изменяется в пределах D= 25 ..142 мм; диаметр газовых отверстий у наконечника типа А равен: d=3,2 ... 15,5, а число их изменяется от 4 до 6; диаметр газового отверстия у наконечника типа Б равен: di = 5,5 ... 31 мм (обозначения показаны на рис. 16.10). По результатам государственных испытаний горелки рекомендованы к применению. Основными положительными качествами их являются: простота и компактность конструкции, возможность работы при низких давлениях газа и воздуха, широкие пределы регулирования производительности. Горелки этого типа предназначены для обогрева кузнечных и термических печей,сушилок.

Рис. 16.10. Турбулентная горелка типа ГНП 1- корпус, 2- сопло, 3- наконечник сопла типа А, 4 - наконечник сопла типа Б, 5- носик

Горелка не с полым предварительным смешением горелка, в которой газ не полностью смешивается с воздухом перед выходными отверстиями. Атмосферная газовая горелкаинжекционная газовая горелка с частичным предварительным смешением газа с воздухом, использующая вторичный воздух среды, окружающей факел.

Атмосферная горелка, предназначенная для установки в топке четырех- и пятисекционных чугунных котлов (ВНИИСТО-Мч), показана на рис. 16.8. Головка горелки имеет 142 отверстия диаметром 4 мм и надевается на эжекционную трубку. В месте выхода газовоздушной смеси из эжектора головка не имеет отверстий. Если здесь расположить отверстия, то пламя над ними будет значительно выше, чем над другими отверстиями, так как при истечении газа из этих отверстий будет использовано динамическое давление потока газовоздушной смеси, движущегося из эжекционной трубки в головку горелки. Кроме того, вследствие повышения выходной скорости пламя над этими отверстиями может быть недостаточно устойчивым. Тепловая нагрузка горелки равна 20 кВт (0,2 м3/ч при QCK == 36 МДж/м3). Горелка запроектирована для сжигания газа с теплотой сгорания QCH= 25 000...36 000 кДж/м3, при этом в зависимости от величины QCH изменяют диаметр сопла. При сжигании природного газа с теплотой сгорания 36 000 кДж/м3 диаметр сопла равен 4 мм, а необходимое давление газа составляет 1,3 кПа. Коэффициент первичного воздуха горелки можно регулировать воздушной шайбой. Эжекционная трубка имеет проточную часть с малым гидравлическим сопротивлением. Головка горелки выполнена таким образом, что вторичный воздух имеет подход к каждому ряду отверстий с одной стороны. Высота пламени при работе горелки с нормальной тепловой нагрузкой примерно равна 100 мм. Горелка проста по конструкции и надежна в эксплуатации. При работе в чугунных секционных котлах атмосферные горелки обеспечивают полное сжигание газа при сравнительно небольшом содержании в продуктах горения оксидов азота. Концентрация NO X обычно не превосходит 0,12 г/м 3 . Это связано с рассредоточением пламени и ступенчатым сжиганием газа (с первичным и вторичным воздухом).

Рис. 16.8. Атмосферная горелка для чугунного котла 1- регулятор воздуха, 2- сопло, 3- эжекционная трубка; 4- головка горелки с огневыми отверстиями

Атмосферная горелка с одним выходным отверстием показана на рис. 16.9. Особенность этой горелки заключается в том, что ее головка имеет не коллектор с большим числом мелких отверстий, а коническую трубку с одним отверстием большого диаметра (40 мм). В результате этого значительно удлиняется пламя горелки. Вследствие разрежения в топке вторичный воздух по кольцевому зазору между горелкой и специальным кожухом поступает к корню факела. У горелки предусмотрена возможность регулирования количества первичного и вторичного воздуха. Такие горелки применяют при переоборудовании на газовое топливо ресторанных плит и пищеварочных котлов (причем в плите может быть одна горелка или блок, состоящий из двух-трех горелок). Тепловая нагрузка горелки составляет 18,6 кВт, давление газа 1,3 кПа. Горелка рассчитана на сжигание газа с теплотой сгорания Q с н =36 000 кДж/м3. В зависимости от теплоты сгорания газа в горелке устанавливают сопло соответствующего диаметра.


Рис. 16.9. Атмосферная горелка с одним выходным отверстием 1- головка горелки, 2- эжекционный смеситель, 3- регулятор, 4- сопло, 5- регулятор первичного воздуха

Горелка специального назначениягорелка, принцип действия и конструкцию которой определяет тип теплового агрегата или особенности технологического процесса.

Рекуперативная горелкагорелка, снабженная рекуператором для подогрева газа или воздуха

Регенеративная горелка– горелка, снабженная ре генератором для подогрева газа или воздуха.

Автоматическая горелкагорелка, оборудованная автоматическими устройствами: дистанционным запальным, контроля пламени, контроля давления топлива и воздуха, запорными клапанами и средствами управления, регулирования и сигнализации.

Турбинная горелкагазовая горелка, в которой энергия вытекающих струй газа используется для привода встроенного вентилятора, нагнетающего воздух в горелку.

Запальная горелкавспомогательная горелка, служащая для розжига основной горелки.

Наиболее применимы на сегодняшний день классификация горелок по способу подачи воздуха, которые делятся на:

– бездутьевые – воздух поступает в топку за счет разрежения в ней;

– инжекционные – воздух засасывается за счет энергии струи газа;

– дутьевые – воздух подается в горелку или топку с помощью вентилятора.

Блочные эжекционные (инжекционные) горелки типа Б И Г, разработанные Промэнергогазом. Горелки этого типа представляют собой серию горелок разных конфигураций и производительности, компонуемых из стандартных элементов. Стандартный элемент горелки состоит из набора единичных однотипных смесителей 2 (рис. 16.4, а), закрепленных в общем коллекторе - газовой камере 3. Единичный смеситель представляет собой трубу диаметром 48X3 мм и длиной 290 мм. В начальной части трубы, которая находится внутри газового коллектора, имеются четыре отверстия диаметром по 1,5 мм каждое, оси которых расположены под углом около 25° к оси горелки. Эти отверстия выполняют роль периферийных сопел, через которые газ истекает внутрь эжекционной трубы и эжектирует воздух, поступающий через открытый торец трубы. Конструкция эжекционной части отработана таким образом, что при разрежении в топке, равном 20 Па, газ эжектирует весь воздух, необходимый для горения, с коэффициентом избытка а= 1,02...1,05. Высокие скорости газовых струй, расположенных по периферии, способствуют созданию профиля скоростей, препятствующего проскоку пламени. Блоки горелок футеруются огнеупорной массой (см. рис. 16.4, б), а на их выходе располагается туннель-стабилизатор глубиной 100 мм. Он предотвращает отрыв пламени. Горелки полностью размещаются в пределах обмуровки котла толщиной 510 мм. Номинальное давление газа перед горелкой составляет 80 кПа (среднее давление), коэффициент глубины регулирования производительности равен 3,4...3,8. В зависимости от компоновки (числа единичных элементов) производительность горелки изменяется от 10 до 240 м3/ч. Горелки БИГ работают без химической неполноты сгорания с малыми избытками воздуха. Содержание оксидов азота составляет 0,15 .. 0,18 г/м3. Горелки компонуют в виде стандартных наборов (см. рис. 16.4, в), состоящих из единичных эжекционных трубок, собранных в один ряд G типоразмеров), в два ряда F типоразмеров) и в три ряда B типоразмера). Горелки предназначены для оборудования котлоагрегатов с расположением в обмуровке стенок котла и на поду вместо колосниковой решетки. Котлы, оборудованные горелками БИГ, имеют более высокий КПД (на 2%), чем при оборудовании эжекционными горелками с центрально расположенными соплами.

Используют газовые горелки при различных давлениях газа: низком – до 5000 Па, среднем – от 5000 Па до 0,3 МПа и высоком – более 0,3 МПа. Чаще используют горелки, Большое значение имеет тепловая мощность газовой горелки, которая бывает максимальная, минимальная и номинальная.

При длительной работе горелки, где газа расходуется большее количество без отрыва пламени, достигается максимальная тепловая мощность.

Минимальная тепловая мощность возникает при устойчивой работе горелки и наименьших расходах газа без проскока пламени.

При работе горелки с номинальным, обеспечивающим максимальный КПД при наибольшей полноте сжигания, расходом газа достигается номинальная тепловая мощность.

Допускается превышение максимальной тепловой мощности над номинальной не более чем на 20%. В случае если номинальная тепловая мощность горелки по паспорту 10000 кДж/ч, максимальная должна быть 12000 кДж/ч.

Основные преимущества инжекционных горелок низкого давления: простота конструкции, устойчивая работа горелок при изменении нагрузок; надежность и простота обслуживания; бесшумность работы; возможность полного сжигания газа и работа на низких давлениях газа; отсутствие подачи воздуха под давлением.

Важная характеристика инжекционных горелок неполного смешения - коэффициент инжекции - отношение объема инжектируемого воздуха к объему воздуха, необходимого для полного сгорания газа. Так, если для полного сгорания 1 м3 газа необходимо 10 м3 воздуха, а первичный воздух составляет 4 м3, то коэффициент инжекции равен 4: 10 = 0,4.

Характеристикой горелок является также кратность инжекции - отношение первичного воздуха к расходу газа горелкой. В данном случае, когда на 1 м3 сжигаемого газа инжектируется 4 м3 воздуха, кратность инжекции равна 4.

Достоинство инжекционных горелок - это их свойство саморегулирования, т.е. поддержание постоянной пропорции между количеством подаваемого в горелку газа и количеством инжектируемого воздуха при постоянном давлении газа.

Пределы устойчивой работы инжекционных горелок ограничены возможностями отрыва и проскока пламени. Это значит, что увеличить или уменьшить давление газа перед горелкой можно только в определенных пределах.

Горелки с полным предварительным смешением газа с воздухом . Инжекция всего воздуха, необходимого для полного сгорания газа, обеспечивается повышенным давлением газа. Горелки полного смешения газа работают в диапазоне давлений от 5000 Па до 0,5 МПа. Их называют инжекционными горелками среднего давления и применяют в основном в отопительных котлах и для обогрева промышленных печей. Тепловая мощность горелок обычно не превышает 2 МВт. Основные трудности повышения их мощности - сложность борьбы с проскоком пламени и громоздкость смесителей.
Эти горелки дают малосветящийся факел, что уменьшает количество радиационной теплоты, передаваемой нагреваемым поверхностям. Для увеличения количества радиационной теплоты эффективно применение в топках котлов и печей твердых тел , которые воспринимают теплоту от продуктов горения и излучают ее на тепловоспринимающие поверхности. Эти тела называют вторичными излучателями. В качестве вторичных излучателей используют огнеупорные стенки тоннелей, стенки топок, а также специальные дырчатые перегородки, установленные на пути движения продуктов сгорания.
Горелки с полным предварительным смешением газа с воздухом подразделяют на два типа: с металлическими стабилизаторами и огнеупорными насадками.
Инжекционная горелка конструкции Казанцева (ИГК) состоит из регулятора первичного воздуха, форсунки, конфузора, смесителя, насадка и пластинчатого стабилизатора (рис. 4).

Рис. 4. Инжекционная горелка ИГК:

Стабилизатор; 2 - насадок; 3 - конфузор; 4 - форсунка; 5 - регулятор первичного воздуха
Регулятор первичного воздуха 5 горелки одновременно выполняет функции глушителя шума, который создается за счет повышенных скоростей движения газовоздушной смеси. Пластинчатый стабилизатор и проскока пламени в широком диапазоне 7 обеспечивает устойчивую работу горелки без отрыва и проскока пламени в широком диапазоне нагрузок. Стабилизатор состоит из стальных пластин толщиной 0,5 мм при расстоянии между ними 1,5 мм. Пластины стабилизатора стягивают между собой стальными стержнями, которые на пути движения газовоздушной смеси создают зону обратных токов горячих продуктов сгорания и непрерывно поджигают газовоздушную смесь.
В горелках с огнеупорными насадками природный газ сгорает с образованием малосветящегося пламени. В связи с этим передача теплоты излучением от факела горящего газа оказывается недостаточной. В современных конструкциях газовых горелок значительно повысилась эффективность использования газа. Малая светимость факела газа компенсируется излучением раскаленных огнеупорных материалов при сжигании газа методом беспламенного горения.

Газовоздушная смесь у этих горелок приготовляется с небольшим избытком воздуха и поступает в раскаленные огнеупорные каналы, где она интенсивно нагревается и сгорает. Пламя не вы ходит из канала, поэтому такой процесс сжигания газа называется беспламенным. Это название условное, так как в каналах пламя имеется.

Газовоздушная смесь подогревается от раскаленных стенок канала. В местах расширения каналов и вблизи от плохо обтекаемых тел создаются зоны задержки горячих продуктов сгорания. Такие зоны - устойчивые источники постоянного подогрева и зажигания газовоздушной смеси. На рис. 5 показана беспламенная панельная горелка. Поступающий в сопло 5 из газопровода 7 газ инжектирует необходимое количество воздуха, регулируемое регулятором первичного воздуха 6. Образовавшаяся газовоздушная смесь через инжектор 4 поступает в распределительную камеру 3, проходит по ниппелям 2 и поступает в керамические тоннели 1. В этих тоннелях происходит сжигание газовоздушной смеси. Распределительная камера 3 от керамических призм 8 теплоизолирована слоем диатомовой крошки, что сокращает теплоотвод из реакционной зоны.

Беспламенное сжигание газа имеет следующие преимущества: полное сгорание газа; возможность сжигания газа при малых избытках воздуха; возможность достижения высоких температур горения; сжигание газа с высоким тепловым напряжением объема горения; передача значительного количества теплоты инфракрасными лучами.

Существующие конструкции беспламенных горелок с огнеупорными насадками по конструкции их огневой части подразделяют на горелки с насадками, имеющие каналы неправильной геометрической формы; горелки с насадками, имеющие каналы правильной геометрической формы; горелки, у которых пламя стабилизируется на огнеупорных поверхностях топки.

Рис. 5. Беспламенная панельная горелка:

Тоннель; 2 - ниппель; 3 - распределительная камера; 4 - инжектор; 5 - сопло; 6 - регулятор воздуха; 7 - газопровод; 8 - керамические призмы
Наиболее распространены горелки с насадками правильной геометрической формы. Огнеупорные насадки таких горелок состоят из керамических плиток размером 65 х 45 х 12 мм. Беспламенные горелки называют также горелками инфракрасного излучения.

Все тела - источники теплового излучения, возникающего за счет колебательного движения атомов. При излучении тепловая энергия веществ превращается в энергию электромагнитных волн, которые распространяются от источника со скоростью, равной скорости света. Эти электромагнитные волны, распространяясь в окружающем пространстве, наталкиваются на различные предметы и легко превращаются в тепловую энергию. Величина ее зависит от температуры излучающих тел. Каждой температуре соответствует определенный интервал длин волн, излучаемых телом. В данном случае передача теплоты излучением происходит в инфракрасной области спектра, а горелки, работающие по этому принципу, называются горелками инфракрасного излучения (рис. 6).

Через сопло 4 (см. рис. 6, а) газ поступает в горелку и инжектирует весь воздух, необходимый для полного сгорания газа. Из горелки газовоздушная смесь поступает в сборную камеру 6 и далее направляется в огневые отверстия керамической плитки 2. Во избежание проскока пламени диаметр огневых отверстий должен быть меньше критической величины и составлять 1,5 мм. Выходящая из огневых камер газовоздушная смесь поджигается при малой скорости ее вылета, чтобы избежать отрыва пламени. В дальнейшем скорость вылета газовоздушной смеси можно увеличить (полностью открыть кран), так как керамические плитки нагреваются до 1000°С и отдают часть теплоты газовоздушной смеси, что приводит к увеличению скорости распространения пламени и предотвращению его отрыва.

Горелки с принудительной подачей воздуха

У горелок с принудительной подачей воздуха процесс образования газовоздушной смеси начинается в самой горелке и завершается в топке. Газ сгорает коротким и несветящимся пламенем. Воздух, необходимый для сгорания газа, подается в горелку принудительно с помощью вентиляторов. Подача газа и воздуха производится по отдельным трубам.

Горелки с принудительной подачей воздуха часто называют двухпроводными и смесительными, так как в них происходит полное перемешивание газовоздушной смеси.

Рис. 7. Горелка с принудительной подачей воздуха низкого давления:

Сопло; 2 - корпус; 3 - фронтальная плита; 4 - керамический тоннель
Наиболее распространенные конструкции этих горелок работают на низком давлении газа и воздуха (рис. 7). Однако некоторые конструкции можно использовать и при среднем давлении газа.

Горелки предназначены для установки в топках котлов и других агрегатах с небольшим объемом топки, а также в нагревательных и сушильных печах.

Газ давлением до 1200 Па поступает в сопло 1 и выходит из него через восемь отверстий диаметром 4,5 мм. Отверстия расположены под углом 30° к оси горелки. В корпусе 2 горелки устроены специальные лопатки, придающие потоку воздуха вращательное движение. Таким образом, газ в виде мелких струек пересекается в закрученном потоке воздуха и создается хорошо перемешанная газовоздушная смесь. Горелка заканчивается керамическим тоннелем 4, имеющим запальное отверстие.

Основные достоинства горелок: возможность сжигания большого количества газа; широкий диапазон регулирования производительности горелок; возможность подогрева воздуха и газа до температур, превышающих температуру воспламенения.

В существующих разнообразных конструкциях горелок интенсификация процесса образования газовоздушной смеси достигается следующими способами: расчленением потоков газа и воздуха на мелкие потоки, в которых проходит смесеобразование; подачей газа в виде мелких струек под углом к потоку воздуха; закручиванием потока воздуха различными приспособлениями, встроенными внутрь горелок.

Комбинированные горелки

Горелки, работающие одновременно или раздельно на газе и мазуте или на газе и угольной пыли, называются комбинированными. Их применяют при перебоях в подаче газа, когда необходимо срочно перейти на другой вид топлива; когда газовое топливо не обеспечивает необходимого температурного режима топки; подача газа на данный объект производится только в определенное время (ночью) для выравнивания суточной неравномерности газопотребления.

Наибольшее распространение получили газомазутные горелки (рис. 8) с принудительной подачей воздуха. Горелка состоит из газовой, воздушной и жидкостной частей. Газовая часть представляет собой полое кольцо, имеющее штуцер для подвода газа и восемь трубочек для распыления газа.

Жидкостная часть горелки состоит из мазутной головки и внутренней трубки, заканчивающейся форсункой 1. Подача мазута в горелку регулируется вентилем. Воздушная часть горелки состоит из корпуса б, завихрителя 3, воздушной заслонки 5, с помощью которой можно регулировать подачу воздуха. Завихритель служит для лучшего перемешивания струи мазута с воздухом. Давление воздуха 2...3 кПа, давление газа до 50 кПа, а давление мазута до 0,1 МПа.

Применение комбинированных горелок дает более высокий эффект, чем одновременное использование газовых горелок и мазутных форсунок или газовых и пылеугольных горелок.

Рис. 8. Комбинированная газомазутная горелка с принудительной подачей воздуха:

Мазутная форсунка; 2 - воздушная камера; 3 - завихритель; 4 - трубки выхода газа; 5 - воздушная регулировочная заслонка; 6 - корпус
Комбинированные горелки необходимы для надежной и бесперебойной работы газоиспользующих установок крупных промышленных предприятий, электростанций и других потребителей, для которых перерыв в работе недопустим.

В качестве резервного топлива служит мазут, в этом случае в центральной трубе устанавливается мазутная форсунка. При переводе горелки на газовое топливо мазутную форсунку заменяют кольцевым каналом, по которому подается газовое топливо.

В центральной части канала установлена труба с чугунным наконечником 2. В наконечнике 24 косые щели, через которые выходит газ, пересекающийся с потоком закрученного воздуха, выходящего из улитки 1. В усовершенствованных конструкциях горелок в наконечнике вместо щелей предусмотрено 115 отверстий диаметром 7 мм. В результате скорость выхода газа увеличилась почти в два раза (150 м/с).

В новых конструкциях горелки применяется периферийная подача газа, при которой газовые струйки, имеющие более высокую скорость, чем воздушные, пересекают закрученный поток воздуха, движущийся со скоростью 30 м/с, под прямым углом. Такое взаимодействие потоков газа и воздуха обеспечивает быстрое и полное их перемешивание, в результате чего газовоздушная смесь сгорает с минимальными потерями.

Технические характеристики горелок приведены в Таблице 2.
Таблица 2. Технические характеристики горелок БГ-Т

Параметры

Виды горелок в зависимости от мощности

Тепловая мощность в режиме «малый огонь», МВт

Присоединительное давление газа перед горелкой, Па

Номинальное давление в камере сгорания теплового агрегата, Па

Номинальное разрежение в камере сгорания газа, Па

Низшая теплота сгорания газа, МДж/м3, не менее

Низшее число Воббе, МДж/м3

Температура окружающей среды, °С, не более

Минимальный коэффициент избытка воздуха при номинальной тепловой мощности, не более

Допускаемое увеличение минимального коэффициента избытка воздуха в диапазоне рабочего регулирования тепловой мощности, не более

Мощность привода вентилятора, кВт, не более

Блочные газовые горелки БГ-Г (рис. 10) предназначены для использования в камерах сгорания тепловых агрегатов различного назначения (паровые и водогрейные котлы , печи, асфальтосмесительные установки и т.д.). В качестве топлива в горелках используют природный газ.

Во входной части корпуса 7 расположен воздухозаборник 14, в котором на оси 13 установлена воздушная заслонка 75с приводом. Привод воздушной заслонки состоит из электромагнита 17 и системы рычагов, связанных с осью заслонки. К корпусу 1 крепится электродвигатель 25, на вал которого насажен центробежный вентилятор 24.

Рис. 10. Горелка блочная газовая БГ-Г:

Корпус; 2 - глазок смотровой; 3 - генератор импульсный; 4 - датчик реле давления воздуха; 5 - палец быстросъемный; 6 - провод высоковольтный; 7 - насадок газовый; 8 - переходник (смеситель) с соплом; 9 - завихритель; 10 - кольцо уплотнительное; 11 - прокладка; 12 - разводка газовая; 13 - ось; 14 - воздухозаборник; 15 - заслонка воздушная; 16 - кронштейн; 17 - электромагнит; 18 - пульт управления; 19 - клапан электромагнитный; 20 - датчик ионизационный (электрод контрольный); 21 - вентиль газовый; 22 - датчик-реле давления газа; 23 - кран; 24 - вентилятор; 25 - электродвигатель; 26 - реле; 27 - электрод нулевой; 28 - электрод запальный

К фланцу корпуса крепится смеситель 8, внутри которого установлен газовый насадок 7с завихрителем 9 и электродами 20, 27 и 28. К торцу смесителя крепится горловина.

Для доступа к газовому насадку и подводящим высоковольтным проводам 6 электродов смеситель при помощи двух быстросъемных пальцев 5 может откидываться в одну или другую сторону.

Газовый насадок 7 соединен с газовой разводкой 12, на которой установлена в зависимости от типоразмера горелки необходимая газовая арматура. Места соединений газового насадка 7 с газовой разводкой 12 и газовой разводки со смесителем горелки уплотнены уплотнительным кольцом 10 и прокладкой 11.

Управляют работой горелки с пульта управления 18, который крепится к корпусу с помощью кронштейна 16.

Воздух в горелку подается электровентилятором. Количество воздуха, поступающего в зону горения, регулируют воздушной заслонкой 15.

При номинальной тепловой мощности горелки электромагнит обесточен и воздушная заслонка открыта (положение 0 на лимбе воздухосборника). В режиме «малый огонь» на электромагнит подается питание, он срабатывает, и воздушная заслонка, поворачиваясь на оси, перекрывает воздухосборник (положение 3 на лимбе воздухосборника).

Газ поступает по газовой разводке 12 в газовый насадок 7 и через его газораздающие отверстия попадает в поток воздуха, закрученный завихрителем 9. Количество газа, подаваемого на горение, регулируют электромагнитными вентилями.

Газовоздушная смесь поджигается искрой, возникающей между запальным электродом 28 и газовым насадком 7 при подаче тока высокого напряжения от импульсного генератора 3.

Давление газа перед горелкой контролируют датчиком-реле 22, а давление воздуха для горения - датчиком-реле 4. Наличие пламени контролируют блоком контроля пламени, расположенным в пульте управления и получающим импульс от датчика контроля пламени 20. Для наблюдения за горением на корпусе горелки имеется смотровой глазок 2.

Режим продувки. Включают электровентилятор, подающий воздух в горелку. Привод обесточен, заслонка 15 полностью открыта, подается максимальное количество воздуха для обеспечения продувки. Электромагнитные вентили на газовой разводке обесточены, что препятствует подаче газа в горелку.

Режим розжига. По окончании продувки горелка переходит в режим розжига: на привод подается питание, он поворачивает ось 13 заслонки /5, уменьшая подачу воздуха для обеспечения розжига горелки. Одновременно включается клапан 19 (на горелках БГ-Г-0,5 и БГ-Г-0,65 включаются два электромагнитных вентиля 27), подавая газ в горелку, и импульсный генератор 3, подавая высокое напряжение на запальный электрод 28. Искра, возникающая между газовым насадком 7 и запальным электродом 28, поджигает газовоздушную смесь.

Режим розжига горелки одновременно является режимом «малый огонь».

Режим эксплуатации. При нормальном розжиге с появлением пламени и устойчивом горении дополнительно включается электромагнитный вентиль 21, отключается электромагнит 17, обеспечивая максимальное открытие воздушной заслонки 15. Горелка переходит в режим «большой огонь». Тепловую мощность регулируют с помощью регулятора температуры (для паровых котлов - давления пара, который при необходимости подает сигнал на пульт управления для изменения расхода газа и воздуха).

Горелка работает в режиме нормальной эксплуатации с трехступенчатым регулированием тепловой мощности.

Горелка БГ-Г-0,12 в зависимости от варианта изготовления работает в режиме трехступенчатого или двухступенчатого регулирования.
Автоматизация процессов сжигания газа
Свойства газового топлива и современные конструкции газовых горелок создают благоприятные условия для автоматизации процессов сжигания газа. Автоматическое регулирование процесса горения повышает надежность и безопасность эксплуатации газоиспользующих агрегатов и обеспечивает их работу в соответствии с наиболее оптимальным режимом.

В существующих газоиспользующих установках применяют системы частичной или комплексной автоматизации.

Современная комплексная газовая автоматика состоит из следующих основных систем: автоматики регулирования, автоматики безопасности, аварийной сигнализации, теплотехнического контроля.

Автоматика регулирования бытовых, коммунальных и промышленных газовых приборов и агрегатов предназначена для управления и регулирования процесса горения газа таким образом, чтобы газовые приборы и агрегаты работали на заданном режиме и обеспечивали оптимальный режим горения газа. Так, у емкостных водонагревателей поддерживается постоянная температура воды в баке, у паровых котлов - постоянное давление пара, у отопительных водогрейных котлов - температура воды в котле.

Автоматика безопасности прекращает подачу газа к горелкам газоиспользующих установок при нарушениях режима работы. При этом контролируются наиболее важные параметры:

Наличие пламени в топке. При отсутствии пламени в топке подача газа на горелку немедленно прекращается;

Давление газа на подводящем газопроводе. При изменении давления газа против установленного минимального и максимального значений подача газа прекращается;

Разрежение в топке. При понижении разрежения в топке до минимально допустимого подача газа прекращается;

Давление воздуха (при наличии соответствующих горелок). При падении давления воздуха до минимально допустимого подача газа прекращается;

Температура воды в котле. Если температура воды превышает допустимую норму, то подача газа прекращается;

Давление пара в котле. При повышении давления пара сверх установленного подача газа прекращается.

При отключении агрегатов подаются звуковой и световой сигналы. Контролируют также загазованность помещений, где установлены газовые приборы и агрегаты.

Приборы контроля и сигнализации дают возможность устанавливать дистанционное управление газоиспользующих установок.

Приборы теплотехнического контроля помогают обслуживающему персоналу вести технологический процесс в оптимальном режиме.

Степень автоматизации газоиспользующего агрегата зависит от конкретных условий его эксплуатации.

Список литературы
.Кязимов К.Г., Гусев в.Е. Основы газового хозяйства. - М.: Высш. шк., 2000.

Кязимов К.Г. Устройство и эксплуатации газового хозяйства. - М.: Высш. шк., 2004.

Кязимов К.Г. Справочник работника газового хозяйства. - М.: Высш. шк., 2006.

Стаскевич Н.Л., Северинец Г.Н., Вигдорчик Д.Я., Справочник по газоснабжению и использованию газа. - Л.: Недра, 1990.

ГОСТ 17356 - 71

ГОСТ 21204 - 83


Сварка с помощью газа - это сварка с применением расплавленного металла. При этом процессе происходит нагрев краев металлических частей деталей до температуры плавления пламенем газовой горелки.

Высокая температура, при которой происходит плавление металла, образуется от воспламенения газа-кислородной смеси. Чтобы заполнить пустоты, которые возникают при совмещении краев металла, используют расплавленную присадочную проволоку.

Горелки для газовой сварки.

Чтобы получить сварочное пламя, необходимое для работы с металлами, применяется горелка. С ее помощью можно контролировать мощность, объем пламени в установленных пределах. Несмотря на всю внешнюю простоту изделия, горелка - это сложный и значимый элемент при сварке.

На рисунке № 1 изображено пламя газовой горелки с температурными показателями.

По своей конструкции горелки для газовой сваркиподразделяются на:

  • инжекторные;
  • безинжекторные.

По применяемому горючему:

  • ацетиленовые;
  • для других газов и жидкого горючего.

По порядку использования могут быть:

  • ручными,
  • машинными.

Инжекторные и безинжекторные горелки для газовой сварки.

Конструктивное наличие струйного насоса в горелке обусловлено уровнем давления, при котором в неё подаётся горючее. Если оно высокое, то дополнительного нагнетания не требуется, топливо подается под своим собственным. При низком давлении нужно большее количество газа, поэтому используется принудительная подача с помощью инжектора. Для создания сварочного пламени нужно получить качественную смесь кислорода и топлива в камере смешивания горелки.


Горелка без инжектора имеет более простое устройство. Топливо и кислород подаются в смеситель одновременно с помощью системы подачи, состоящей из шлангов, необходимого количества кранов (вентилей), ниппелей. В смесителе происходит образование однородной смеси.

Однородная смесь поступает по трубке наконечника на мундштук, воспламеняется и создает пламя для сварки. Чтобы процесс горения соответствовал необходимым требованиям, давление, с которым подается смесь из мундштука, должно быть в строго определенных пределах. Если скорость будет выше установленной, пламя, отрываясь от среза горелки, будет тухнуть. Если ниже, то смесь, попадая вовнутрь горелки, будет взрываться в ней. Скорость подачи горючей смеси (ацетилено-кислородной) варьируется от 70 до 160 м/сек, она зависит от вида мундштука, размеров канала, процентного состава смеси.


В горелках высокого давления может применяться водород или метан. Она проста в использовании и устройстве. Но, в сравнении с инжекторными горелками низкого давления, используются намного реже.

Работа горелки низкого давления.

Кислород под высоким давлением (около 4 атмосфер) поступает в горелку через систему подачи, состоящую из ниппеля, регулировочного крана. Проходит через инжектор с высокой скоростью. Под действием струи кислорода в камере струйного насоса создается давление ниже атмосферного и происходит засасывание горючего газа. Он поступает через ниппель и вентиль в камеру инжектора, а затем в камеру смешивания, соединяется с кислородом, и со скоростью в строгих пределах поступает по каналу на мундштук.

Расход кислорода не меняется, на него не влияют внешние факторы, в отличие от расхода применяемого газа. Повышение температуры мундштука и наконечника горелки, изменение давления, увеличение сопротивления повышают расход ацетилена.

Другие виды горелок.

В некоторых отраслях промышленности нашли применение горелки для газовой сварки, работающие на жидких горючих, таких как бензин или керосин. В основе принципа лежит распыление керосинно-кислородной смеси и испарение мелкокапельного горючего от нагрева с мундштука.

Используемые в настоящее время горелки в целях безаварийной эксплуатации должны соответствовать требованиям безопасности:

  • сварочное пламя должно быть определенной формы;
  • регулировка пламени в нужных пределах;
  • устойчивость к внешним воздействиям и безопасность эксплуатации;
  • удобство в применении.

Основным рабочим узлом практически любого газового котла является газовая горелка для отопления, обеспечивающая как подготовку воздушно-топливной смеси, так и ее подачу в камеру сгорания, а также формирование устойчивого огня. Непосредственно газовая горелка определяет надежность и экономичность газового котла. По этой причине следует тщательно подойти к вопросу выбора типа конструкции горелки, ее особенностям. В настоящей статье будет рассмотрено устройство горелок, классификация, их разновидности, а также процесс обслуживания.

Для обеспечения процесса по максимальному сжиганию природного газа, наибольшей теплоотдаче, необходимо обеспечить его смешивание с достаточным объемом воздуха с нормальным количеством кислорода, который выступает в качестве окислителя. На выходе смесь топлива из воздуха и газа должна сгорать почти бесцветным огнем, имеющим синеватый оттенок и характеризующимся максимальной температурой. Исходя из конструктивных особенностей, газовые горелки для различаются со способом подачи воздуха, газа, формированию факела пламени, а также смешиванию компонентов.

В комплекте бытовых котлов отопления в основном применяются только 2 вида газовых горелок в соответствии со способом подготовки смеси для топлива:

  1. вентиляторные (надувные);
  2. атмосферные.


Кроме перечисленных, имеются также регенеративные, инжекционные рекуперативные, инжекционные, с предварительным частичным или полным смешиванием, однако востребованы они, главным образом, в технологическом оборудовании и промышленных котлах. Надувные и атмосферные типы обычно усовершенствуются с применением отдельных аспектов, которые характерны для иных видов конструкций, тем не менее, принцип работы неизменен.

Атмосферная горелка


Принцип функционирования горелки данного вида довольно прост. По газовой трубке топливо поступает в горелку. Агрегат имеет эжектор (прорезь), регулируемый особой заслонкой или прижимной гайкой. Посредством прорези в горелку вместе с топливом поступает и воздух. Так осуществляется формирование смеси из газа и воздуха. Открывая прорезь больше, можно добиться увеличения подачи кислорода, а закрывая ее – соответственно уменьшения. Можно сказать, что таким простым способом горелка для отопления обеспечивает процесс регулирования по степени сжигания топлива. После этого, смесь из газа и воздуха попадает в камеру сгорания, где и осуществляется процесс сжигания.

Количество отверстий зависит от параметров камеры сгорания, а также формы самой горелки. Самое важное, что формирующиеся небольшие факелы, появляющиеся из отверстий, не обеспечивают создания большого давления, по этой причине топливо сгорает результативно и равномерно. Чем значительнее давление, тем вероятность понижения результативности работы увеличивается. По этой причине изготовители стремятся повысить количество отверстий за счет сокращения их размера.

Важно!!! Такие газовые горелки для печей отопления по принципу работы схожи с устройствами, используемыми в промышленном подовом оборудовании.

Большинство специалистов утверждают, что такая конструкция довольно проста и эффективна, с высокой степенью надежности. Поэтому она часто применяется, как в моделях газового оборудования небольшой стоимости, так и дорогих агрегатах. Большинство домашних мастеров, занимающихся созданием газового оборудования, изготовляют газовые горелки для котлов отопления своими руками именно атмосферного типа. А причина одна – дешевизна агрегата и простота изготовления.

Вентиляторная горелка

Это оборудование функционирует уже совсем по иному принципу. Здесь применяется нагнетание воздушных масс принудительно, к тому же соотношение смеси рассчитывается точнее, что обеспечивает сгорание топлива намного эффективнее. Обычно газовая горелка для отопления дома данного типа монтируется в котлах, имеющих, где есть возможность проводить надув.

Как было указано выше, в атмосферных типах горелок смешивание воздуха и природного газа осуществляется в самом начале устройства, иными словами, на входе, в горелках вентиляторных этот процесс происходит на выходе камеры сгорания. Это является существенной отличительной чертой. Следует заметить, что купить газовую горелку для котла этого типа можно в любом магазине отопительного оборудования . Такие горелки, главным образом монтируются в котлах, комплектующихся автоматикой.

Обычно вентиляторная горелка является целым блоком, включающим в себя:

Обслуживание горелки

Специалисты утверждают, что вне зависимости от типа газовой горелки, чистить ее необходимо с небольшой периодичностью. Оптимальным вариантом является промывка и просушка горелки. Однако для этого ее придется снять, что обеспечит большую эффективность очистки.

Следует заметить, что сегодня цена на газовые горелки для котлов отопления различается в зависимости от типа агрегата.


Некоторые продувают горелки, но тут нужно учитывать тот факт, что устройство предназначено для функционирования на газе под давлением, которое не больше 0.15 бара на выходе. И если осуществлять продувку при помощи компрессора, который обеспечивает нагнетание воздуха до 6-10 бар, можно горелку привести в негодность.

Также, в независимости от типа горелки, используемой в котле, необходимо грамотно задать параметры ее настройки. Именно это влияет на качество получаемой смеси газа и воздуха, точные пропорции, и соответственно – результативность сгорания топлива.

В завершении статьи следует отметить, что, осуществляя выбор котла для отопления для загородной или частной недвижимости, владельцу необходимо обратить внимание не только на функциональные возможности и мощность оборудования, но и отнестись с внимательностью к выбору типа газовой горелки. На сегодняшний день цены на газовые горелки котлов Роко, пользующихся большой популярностью, очень привлекательны.
Главное помнить, что от типа горелки зависит перерасход и экономия топлива, снижение или увеличение срока работы отопительного оборудования, а также температурный режим помещения.