Сопротивление щелевой антенны на частоте. Скелетно-щелевая антенна: мифы и реальность. Антенна Кассегрена с плоской фазовой пластиной

Изобретение относится к антенно-фидерным устройствам, а именно к антеннам ультракоротких радиоволн и антеннам сверхвысоких частот для излучения волн горизонтальной поляризации с круговой диаграммой направленности в горизонтальной плоскости. Техническим результатом, достигаемым от осуществления предложенного изобретения, является расширение рабочего диапазона частот щелевой цилиндрической антенны, обеспечение антенны устройствами согласования с фидером, некритичными к размерам при настройке антенны на рабочую резонансную частоту. Щелевая цилиндрическая антенна содержит проводящий цилиндрический корпус с продольной щелью с первой и второй кромками и фидер, дополнительно содержит первый проводящий хомут, второй проводящий хомут и согласующий отрезок кабеля, при этом первый хомут расположен с образованием гальванического контакта на первой кромке щели, второй хомут расположен с образованием гальванического контакта на второй кромке щели, фидер на поверхности цилиндра проложен вдоль прямой линии, диаметрально противоположной продольной оси щели, с загибом в окрестности точки возбуждения щели, проложен через первый хомут с образованием внешним проводником фидера гальванического контакта с первым хомутом, согласующий отрезок кабеля проложен через второй хомут, центральный проводник фидера гальванически соединен с центральным проводником согласующего отрезка кабеля. 1 з.п. ф-лы, 6 ил.

Рисунки к патенту РФ 2574172




Область техники, к которой относится изобретение

Изобретение относится к антенно-фидерным устройствам, а именно к антеннам ультракоротких радиоволн и антеннам сверхвысоких частот для излучения волн горизонтальной поляризации с круговой диаграммой направленности в горизонтальной плоскости.

Уровень техники

Щелевая антенна была впервые предложена в 1938 Аланом Блюмлейном (Alan D. Blumlein) с целью применения в телевизионном вещании в диапазоне ультракоротких волн с горизонтальной поляризацией и круговой диаграммой направленности (ДН) в горизонтальной плоскости [Британский патент № 515684. HF electrical conductors. Alan Blumlein, опубл. 1938. US patent № 2,238,770 High frequency electrical conductor or radiator]. Антенна представляет собой трубу с продольной щелью. Простота конструкции, отсутствие выступающей части над поверхностью, в которой прорезана щель, привлекли к ней внимание специалистов, проектирующих радиосистемы для подводных лодок. Щелевые антенны не нарушают аэродинамику объектов, на которых они установлены, что определило их широкое применение на самолетах, ракетах и других подвижных объектах. Такие антенны со щелями, прорезанными в стенках волноводов прямоугольного, круглого или иной формы поперечного сечения, широко используются в качестве бортовых и наземных антенн радиолокационных и радионавигационных систем.

Итак, известна первая щелевая цилиндрическая антенна A.D. Blumlein для излучения горизонтально поляризованных волн высоких частот, содержащая проводящий цилиндр с продольной щелью, устройства для возбуждения щели на одном конце цилиндра и короткозамыкатель на другом конце цилиндра, устройство для регулировки ширины щели. Проводящий цилиндр имеет длину, равную половине длины волны в свободном пространстве.

Недостатками известной первой щелевой антенны является то, что:

В антенне нет устройств для настройки антенны на резонансную частоту,

Антенна имеет длину, равную половине длины волны в свободном пространстве, что затрудняет получение приемлемых характеристик антенны в отношении направленных свойств и согласования антенны с фидером.

Известна вторая щелевая цилиндрическая антенна для излучения горизонтально поляризованных волн высоких частот , содержащая проводящий цилиндр с продольной щелью, фидер, короткозамыкатель на одном конце щели и устройства для возбуждения антенны на другом конце щели, названный цилиндр имеет диаметр размером между 0,151 и 0,121, где 1 - длина волны в свободном пространстве на рабочей частоте. Названный цилиндр имеет длину близкую к девяти десятым четверти длины стоячей волны, установившейся вдоль щелевой линии на цилиндре (при этом длина волны в щелевой линии на цилиндре в несколько раз превышает длину волны в свободном пространстве).

Антенна при вертикальной ориентации цилиндра имеет практически круговую диаграмму направленности с горизонтальной поляризацией поля излучения, имеет высокий коэффициент направленного действия (КНД). Антенна компактна, удобна для установки на крышах высоких зданий, ее плавные контуры поверхности препятствуют скоплению мокрого снега и образованию льда. Антенна благодаря круговой цилиндрической форме имеет сравнительно малую ветровую нагрузку.

Известная вторая антенна устраняет недостатки первой известной антенны, обусловленные ее размером в половину длины волны в свободном пространстве. Всенаправленная щелевая антенна Андрея Альфорда, созданная в 1946 году и установленная на небоскребе Крайслер в Нью Йорке, использовалась для первых трансляций цветного телевидения .

Однако известная вторая щелевая цилиндрическая антенна имеет следующие недостатки:

антенна имеет большой в длинах волн в свободном пространстве продольный размер, что затрудняет использовать ее в качестве излучающего элемента антенной решетки, формирующей диаграмму направленности специального вида в плоскости вектора Н;

антенна не имеет устройств для ее согласования с фидером.

Известна третья щелевая цилиндрическая антенна для излучения горизонтально поляризованных волн высоких частот , содержащая проводящий цилиндр с продольной щелью, короткозамкнутой с обоих концов цилиндра, возбуждаемой коаксиальным кабелем, внешний проводник которого гальванически соединен с первой кромкой щели, а центральный проводник гальванически соединен со второй кромкой щели.

Известная третья щелевая цилиндрическая антенна имеет недостатки:

Вследствие несимметричного возбуждения антенны возбуждается волна, распространяющаяся в линии, образованной внешним проводником коаксиального кабеля и цилиндром, в результате наблюдается заметное излучение кабеля (антенный эффект фидера), ее характеристики существенным образом зависят от внешних эксплуатационных факторов;

Нет устройств для согласования антенны с фидером (для настройки антенны в резонанс на рабочей частоте),

Известная третья щелевая цилиндрическая антенна имеет узкий диапазон рабочих частот, не превышающий 1% на уровне КСВ в линии питания.

Третья известная щелевая цилиндрическая антенна, питаемая коаксиальным кабелем, является по совокупности существенных признаков наиболее близкой к настоящему изобретению. Эта антенна выделена авторами в качестве прототипа.

Раскрытие изобретения

Технической задачей настоящего изобретения является расширение рабочего диапазона частот щелевой цилиндрической антенны, обеспечение антенны устройствами согласования с фидером, некритичными к размерам при настройке антенны на рабочую (резонансную) частоту.

Поставленная задача достигается тем, что щелевая цилиндрическая антенна, содержащая проводящий цилиндрический корпус (далее корпус) с продольной щелью с первой и второй кромками и фидер, дополнительно содержит первый проводящий хомут, второй проводящий хомут (далее по тексту первый хомут, второй хомут) и согласующий отрезок кабеля, при этом первый хомут расположен с образованием гальванического контакта на первой кромке щели, второй хомут расположен с образованием гальванического контакта на второй кромке щели, фидер на поверхности цилиндра проложен вдоль прямой линии, диаметрально противоположной продольной оси щели, с загибом в окрестности точки возбуждения щели, проложен через первый хомут с образованием внешним проводником фидера гальванического контакта с первым хомутом, согласующий отрезок кабеля проложен через второй хомут, центральный проводник фидера гальванически соединен с центральным проводником согласующего отрезка кабеля.

Введение в состав антенны первого проводящего хомута, второго проводящего хомута и согласующего отрезка кабеля, их взаимное расположение и соединение в антенне как указано выше решает следующие задачи:

Создать антенну, обеспечивающую за счет симметричной системы питания симметричную диаграмму направленности в плоскости вектора Н, без раздвоения диаграммы и без отклонения максимума диаграммы направленности от плоскости, перпендикулярной к оси цилиндра;

Создать антенну, обеспечивающую круговую диаграмму направленности в плоскости вектора за счет того, что диаметр цилиндра много меньше длины волны;

Создать антенну, обеспечивающую устойчивые характеристики излучения при использовании как узких щелей с невысоким волновым сопротивлением, так и широких щелей с высоким волновым сопротивлением;

Создать антенну, обеспечивающую компенсацию реактивной составляющей входного импеданса антенны в широком диапазоне частот;

Создать антенну, сопротивление излучения которой в широком диапазоне частот изменяется в небольших пределах;

Создать антенну, обеспечивающую низкий КСВ в линии питания за счет согласования входного импеданса антенны с волновым сопротивлением фидера в широкой полосе частот;

Снизить уровень мощности, возвращающийся к передатчику при работе антенны на передачу, за счет согласования антенны с фидером;

Снизить уровень искажений спектра передаваемого (принимаемого) антенной сигнала за счет равномерной амплитудно-фазовой характеристики антенны в диапазоне частот;

Повысить устойчивость антенны к высокочастотному пробою за счет снижения напряженности поля в соединителе радиочастотном вследствие снижения КСВ в линии питания при работе антенны в режиме передачи;

Обеспечить антенну устройством согласования за счет изменения реактивного сопротивления устройства согласования и тем самым расширить полосу рабочих частот антенны;

Обеспечить простой метод настройки антенны по согласованию с фидером в диапазоне частот;

Обеспечить максимальную передачу мощности за счет согласования с волновым сопротивлением фидера;

Повысить потенциально возможный уровень мощности в выбранном заранее фидере за счет снижения КСВ в нем;

Минимизировать потери в фидере и в результате снизить нагрев фидера при передаче по нему мощности;

Минимизировать излучение (прием) электромагнитных волн фидером (внешней стороной внешнего проводника коаксиального кабеля);

Создать щелевую антенну, которая могла бы использоваться как самостоятельная антенна, а также как элемент антенной решетки;

Создать антенну, удобную для ее монтажа на трубе или поясе решетчатой башни.

Антенна компактна, при вертикальной ориентации цилиндра излучает горизонтально поляризованные волны. Может служить в качестве излучающего элемента антенной решетки. Антенная решетка щелевых излучателей может быть установлена как непосредственно на земной поверхности, так и на крышах высоких зданий. Плавные контуры поверхности антенны препятствуют скоплению на ней мокрого снега и образованию льда. Антенна благодаря круговой цилиндрической форме имеет сравнительно малую ветровую нагрузку.

Включением в состав антенны обтекателя решена задача защиты щелевой цилиндрической антенны в соответствии с данным изобретением от воздействия внешних эксплуатационных факторов.

Решение перечисленных выше задач свидетельствует о том, что создана новая щелевая цилиндрическая антенна, обеспечивающая рабочие характеристики в широком диапазоне частот.

Решение первой из указанных задач получено в результате того, что предложенная щелевая цилиндрическая антенна возбуждается симметрично относительно середины щели.

Диапазон рабочих частот предложенной антенны со стороны более коротких волн ограничен изменением формы диаграммы направленности (ДН). Используют щели такой длины, при которой ДН имеет только один максимум, ориентированный перпендикулярно оси антенны. Уменьшение длины волны при неизменных размерах щели может привести к появлению двух максимумов, отклоненных от оси антенны.

Увеличение длины волны ограничивается уменьшением коэффициента направленного действия (КНД). Оно оказывается значительным, если диаметр цилиндра меньше 0,12 длины волны в свободном пространстве.

Предложенная антенна может быть настроена в указанном диапазоне частот.

Решение задачи создания круговой диаграммы направленности в плоскости вектора получено за счет того, что диаметр цилиндра много меньше длины волны в свободном пространстве.

Решение третьей задачи, а именно обеспечение широкой полосы рабочих частот как с узкими, так и широкими щелями, получено в результате компенсации реактивной составляющей входного импеданса антенны.

Решение задачи обеспечения простого метода компенсации реактивной составляющей входного импеданса антенны в диапазоне частот достигается использованием для компенсации двух последовательно включенных конденсаторов.

Решение задачи: минимизировать излучение (прием) электромагнитных волн фидером - получено за счет рационального размещения фидера на поверхности цилиндра, введения в состав антенны первого проводящего хомута, обеспечением гальванического контакта внешнего проводника с первым хомутом по всей его окружности на выходе из хомута.

Краткое описание чертежей

На фиг. 1а) представлена щелевая цилиндрическая антенна 1 в соответствии с настоящим изобретением. На фиг. 1б) показан вид спереди щелевой цилиндрической антенны, на фиг. 1в) показан вид сверху щелевой цилиндрической антенны. На фиг. 1б) и фиг. 1в) введены обозначения:

1 - щелевая цилиндрическая антенна,

2 - цилиндрический корпус,

4 - первая кромка щели,

5 - вторая кромка щели,

7 - первый хомут,

8 - второй хомут,

9 - согласующий цилиндр,

10 - согласующий отрезок кабеля,

11 - изгиб фидера (на повороте от вертикального участка к горизонтальному участку, расположенному в окрестности точки возбуждения щели),

А - область возбуждения щели.

На фиг. 2а) показана область А возбуждения щели. На фиг. 2б) показано соединение внешнего проводника фидера с первым хомутом и первой кромкой щели, устройство согласования входного импеданса антенны и его соединение со второй кромкой щели. На фиг. 2в) показано в разрезе соединение внешнего проводника фидера со вторым хомутом и второй кромкой щели, согласующий цилиндр и согласующий отрезок кабеля. На фиг. 2б) и фиг. 2в) дополнительно введены следующие обозначения:

12 - центральный проводник согласующего отрезка кабеля,

13 - центральный проводник фидера,

14 - внешний проводник фидера.

На фиг. 3 приведена эквивалентная схема антенны; на фиг. 3 введены новые обозначения:

15 - емкость конденсатора, образованного внутренней поверхностью согласующего цилиндра 9 и внешней поверхностью внешнего проводника согласующего отрезка кабеля 10,

16 - емкость конденсатора, образованного внутренней поверхностью внешнего проводника и центральным проводником согласующего отрезка кабеля 10,

17 - индуктивность, обусловленная протеканием токов по внутренней и внешней поверхностям трубы от первой кромки ко второй кромке щели (при отсутствии конденсаторов 15 и 16),

18 - реальная часть входного сопротивления антенны (до подключения конденсаторов 15 и 16),

19 - условная клемма, соответствующая точке гальванического контакта внешнего проводника фидера через первый проводящий хомут с кромкой 4,

20 - условная клемма, соответствующая точке на входе центрального проводника согласующего отрезка кабеля,

21 - точка гальванического контакта согласующего цилиндра через проводящий хомут 2 с кромкой 5 щели 3.

На фиг. 4 приведены экспериментальные зависимости реальной и мнимой частей входного сопротивления и КСВ от частоты первого и второго образцов щелевой цилиндрической антенны; на фиг. 4 введены обозначения:

221 - зависимость от частоты реальной части входного сопротивления первого образца с согласующим отрезком кабеля длиной 10,5 мм,

222 - зависимость от частоты мнимой части входного сопротивления первого образца с согласующим отрезком кабеля длиной 10,5 мм,

223 - зависимость от частоты КСВ антенны первого образца с согласующим отрезком кабеля длиной 10,5 мм,

231 - зависимость от частоты реальной части входного сопротивления второго образца с согласующим цилиндром длиной 11,5 мм и согласующим отрезком кабеля длиной 20,5 мм,

232 - зависимость от частоты мнимой части входного сопротивления второго образца с согласующим цилиндром длиной 11,5 мм и согласующим отрезком кабеля длиной 20,5 мм,

233 - зависимость от частоты КСВ антенны второго образца второго образца с согласующим цилиндром длиной 11,5 мм и согласующим отрезком кабеля длиной 20,5 мм,

241 - зависимость от частоты реальной части входного сопротивления второго образца с согласующим цилиндром длиной 7 мм и согласующим отрезком кабеля длиной 24 мм,

242 - зависимость от частоты мнимой части входного сопротивления второго образца с согласующим цилиндром длиной 7 мм и согласующим отрезком кабеля длиной 24 мм,

243 - зависимость от частоты КСВ антенны второго образца с согласующим цилиндром длиной 7 мм и согласующим отрезком кабеля длиной 24 мм,

251 - зависимость от частоты реальной части входного сопротивления второго образца с согласующим цилиндром длиной 5 мм и согласующим отрезком кабеля длиной 30 мм,

252 - зависимость от частоты мнимой части входного сопротивления второго образца с согласующим цилиндром длиной 5 мм и согласующим отрезком кабеля длиной 30 мм,

253 - зависимость от частоты КСВ антенны второго образца с согласующим цилиндром длиной 5 мм и согласующим отрезком кабеля длиной 30 мм,

На фиг. 5 приведены примеры распределения напряженности электрического поля вдоль линии передачи 26, представляющей собой продольную щель на цилиндре, и вдоль двухпроводной линии, использованной для возбуждения упомянутой линии передачи: а) частота генератора меньше критической частоты основной волны щелевой линии на круговом цилиндре, б) частота генератора примерно равна критической частоте основной волны щелевой линии на круговом цилиндре, в) частота генератора больше критической частоты основной волны щелевой линии на круговом цилиндре.

На фиг. 5 введены обозначения:

27 - сосредоточенный источник напряжения,

28 - двухпроводная линия передачи,

29 - векторы напряженности электрического поля.

На фиг. 6 представлена силовыми линиями структура электрического поля в некоторый момент времени во внутренней и внешней областях щелевой цилиндрической антенны в сечении, перпендикулярном оси антенны. На фиг. 6 введены обозначения: 30 - силовые линии электрического поля.

На фиг. 7 приведен пример применения щелевой цилиндрической антенны по настоящему изобретению в качестве элемента антенной решетки.

Осуществление изобретения

Обратимся к фиг. 1б, на которой представлена щелевая антенна 1 в соответствии с настоящим изобретением. Антенна выполнена в виде цилиндрического корпуса 2 с щелью 3 с первой кромкой 4 и второй кромкой 5, фидера 6, первого проводящего хомута 7, второго проводящего хомута 8, согласующего цилиндра 9, согласующего отрезка кабеля 10 и элементов крепежа.

Цилиндрический корпус 2 выполнен из проводящего материала, такого как, например, латунь, алюминиевый сплав, сталь или иной металл, или металлический сплав с хорошей проводимостью. Цилиндрический корпус с 2 в поперечном сечении имеет вид окружности. Корпус в поперечном сечении может иметь вид квадрата, прямоугольника, эллипса или иной кривой фасонного профиля.

Щель 3 выполнена в цилиндрическом корпусе 2 на всю глубину стенки корпуса фрезерованием, лазерной резкой или иной механической операцией с образованием первой кромки 4 и второй кромки 5, параллельных продольной оси цилиндрического корпуса.

В качестве фидера 6 может быть использован серийный коаксиальный кабель. Согласующий цилиндр 9 для определенности показан в виде отрезка кругового цилиндра.

Согласующий отрезок кабеля 10 для определенности показан в виде короткого отрезка коаксиальной линии. Согласующий отрезок кабеля 10 частично расположен внутри согласующего цилиндра 9, частично вне 9.

Согласующий цилиндр 9, хомуты 7 и 8 выполнены из хорошо проводящего материала, например из латуни или алюминиевого сплава. Для обеспечения пайки покрыты, например, олово-висмутовым сплавом.

Конец согласующего отрезка кабеля 10, противолежащий щели, разомкнут и ни с чем не соединен. Центральный проводник 11 согласующего отрезка кабеля 10 выходит из согласующего цилиндра 9 и простирается до середины щели 3.

Указанные выше устройства и детали взаимно расположены относительно друг друга и соединены между собой следующим образом.

Первый хомут 7 закреплен с образованием гальванического контакта на первой кромке 4 щели, второй хомут 8 закреплен с образованием гальванического контакта на второй кромке 5 щели, фидер 6 на поверхности цилиндра 2 закреплен вдоль прямой линии, диаметрально противоположной продольной оси щели, с изгибом 13 в окрестности точки возбуждения щели, далее проложен через первый хомут 7 с образованием внешним проводником 14 фидера гальванического контакта с первым хомутом 7, согласующий отрезок кабеля 10 проложен внутри согласующего цилиндра, который охвачен вторым хомутом, центральный проводник 12 фидера гальванически соединен с центральным проводником 11 согласующего отрезка кабеля.

Второй конец фидера 6 установлен в соединитель радиочастотный. При этом в качестве согласующего отрезка кабеля 10 используют либо отрезок стандартного коаксиального кабеля, либо отрезок специальной линии передачи, состоящей из внешнего проводника в виде трубки, центрального проводника в виде стержня или трубки и расположенного между ними полого диэлектрического цилиндра.

Для крепления фидера 6 к цилиндрическому корпусу 2 могут быть использованы стандартизованные хомуты, винты и гайки.

Принцип работы антенны

Антенна работает следующим образом. Электромагнитные колебания в антенне возбуждаются в результате приложения разности потенциалов в двух точках 19 и 20, противолежащих друг другу на первой 4 и второй 5 кромках щели 3. Для эффективного возбуждения антенны диаметр трубы 2 должен быть выбран таким, чтобы частота генератора была бы выше критической частоты основной волны H 00 щелевой линии на цилиндрическом волноводе . С целью иллюстрации этого положения были рассмотрены (пользуясь строгим решением краевой задачи электродинамики) на модельной задаче три ситуации, представленные на фиг. 5.

На фиг. 5 изображена щелевая линия на круглом волноводе, последовательно соединенная с двухпроводной линией, к концу которой подключен генератор напряжения. На фиг. 5 приведены примеры распределения напряженности электрического поля вдоль линии передачи для следующих случаев: а) частота генератора меньше критической частоты основной волны щелевой линии на круговом цилиндре, б) частота генератора примерно равна критической частоте основной волны щелевой линии на круговом цилиндре, в) частота генератора больше критической частоты основной волны щелевой линии на круговом цилиндре. На фиг. 5 напряженность электрического поля пропорциональна длине вектора. Как видно из фиг. 5, в случае а) электромагнитная волна отражается практически от входа в линию передачи. Волна проникает в щелевую линию на пренебрежимо малую в длинах воли глубину. В случае б) в щелевой цилиндрической линии передачи устанавливается экспоненциально убывающее распределение поле. В случае в) в щелевой цилиндрической линии передачи устанавливается стоячая волна. При этом длина стоячей волны в щелевой линии передачи больше, чем длина стоячей волны в двухпроводной линии передачи.

Предпочтительно выбирать диаметр трубы равным 0,14 длины волны в свободном пространстве. Длину щели целесообразно выбрать близкой к половине длины волны основной волны H 00 щелевой линии на цилиндрическом волноводе

Ширина щели 3 не превышает одной тридцатой длины волны. Поэтому неравномерностью в распределении тока на центральном проводнике кабеля в пределах щели 3 можно практически пренебречь. Следовательно, несимметричный коаксиальный кабель введен в область возбуждения антенны таким образом, что он не нарушает ни физической, ни электрической симметрии антенны. Токи смещения, возникающие между внешним проводником фидера 6 и корпусом 2 на участке от изгиба фидера до щели, малы вследствие того, что внешний проводник фидера 6 и корпус 2 имеют гальванический контакт между собой через посредство первого проводящего хомута 7. Гальванический контакт внешнего проводника фидера 6 и корпуса 2 обуславливает равенство напряженности электрического поля нулю в месте их соединения. На участке фидера, расположенном вдоль прямой, диаметрально противоположной оси щели, токи смещения между внешним проводником фидера 6 и корпусом 2 не возбуждаются, поскольку на этом участке пути потенциал равен нулю. Следовательно, потенциально возможным излучением щели, образуемой между внешним проводником фидера 6 и корпусом 2, можно пренебречь. Таким образом, исключается антенный эффект фидера и связанные с ним непредсказуемые искажения диаграммы направленности антенны, изменения входного импеданса антенны, излучение кроссполяризованного поля. Пользуясь строгим решением уравнений Максвелла при заданных идеальных граничных условиях, были вычислены временным методом силовые линии электрического поля в разные моменты времени в течение одного периода колебаний напряжения генератора. Силовые линии в некоторый момент времени показаны на фиг. 6. Для удобства обозначения элементов антенны числами выбран момент времени, когда напряженность электрического поля в непосредственной окрестности щели мала, поэтому силовые линии в этой окрестности на фиг.6 отсутствуют. Вдали от щели наблюдаются уже сформировавшиеся вихри поля, представленные силовыми линиями, не опирающимися на заряды на стенках цилиндра. В промежуточной зоне силовые линии берут начало на нижней половине цилиндра на представленном чертеже и заканчивают свой путь на верхней части цилиндра. В точке, противолежащей точке центра щели, силовая линия не берет и не заканчивает свой путь, поскольку потенциал в этой точке равен нулю. Эта точка является граничной точкой между нижней и верхней половинками цилиндра. По указанному выше правилу здесь должна была бы брать начало и завершать свой путь силовая линия. Однако это оказывается невозможным, т.к. векторы напряженности электрического поля, касательные к нижней и верхней части силовой линии, в этой точке противоположны друг другу и, следовательно, гасят друг друга. По этой причине окрестность линии, противолежащей оси щели, оказывается удобной для прокладки вдоль нее фидера с целью минимизации антенного эффекта фидера.

Указанная выше конструкция антенны обеспечивает удобную регулировку согласования антенны с фидером. Рассмотрим это подробнее, обратившись к эквивалентной схеме антенны на фиг. 3. На фиг. 3 числом 15 обозначен первый конденсатор с емкостью С 1 , образованный внутренней поверхностью согласующего цилиндра 9 и внешней поверхностью внешнего проводника согласующего отрезка кабеля 10. При этом роль диэлектрика выполняет оболочка кабеля. Числом 16 обозначен второй конденсатор с емкостью С 2 , образованный внутренней поверхностью внешнего проводника и поверхностью центрального проводника согласующего отрезка кабеля 10. Числом 17 обозначена индуктивность L, обусловленная протеканием токов по внутренней и внешней поверхностям трубы от первой кромки 4 ко второй кромке 5 щели. Числом 18 обозначено сопротивление R, обусловленное потерями антенны на излучение. Клемма 19 соответствует точке гальванического контакта внешнего проводника фидера через посредство первого проводящего хомута с кромкой 4. Клемма 20 соответствует точке на входе центрального проводника согласующего отрезка кабеля. Числом 21 обозначена точка гальванического контакта согласующего цилиндра через посредство проводящего хомута 8 с краем 5 щели 3.

Два последовательно включенных конденсатора 15 и 16 имеют эквивалентную емкость С 3:

Входное сопротивление на клеммах 19, 20 Z вх, обусловленное последовательным включением эквивалентной емкости С 3 и цепочки из параллельно включенных сопротивления R и индуктивности L, на частоте равно:

На резонансной частоте мнимая часть входного сопротивления равна нулю, т.е.

Сделав в (2) замену в знаменателе множителя в квадратных скобках на его значение из (3), получим величину вх на резонансной частоте:

Идеальное согласование с фидером достигается при равенстве входного сопротивления антенны волновому сопротивлению фидера. При заданных L и R регулировка по согласованию достигается подбором величины эквивалентной емкости С 3 .

В предельном случае, когда отсутствует согласующий цилиндр (C 1 ), эквивалентная емкость С 3 равна емкости С 2 - емкости согласующего отрезка кабеля. Обычно для согласования антенны с фидером требуется иметь небольшое значение величины С 2 . Иногда, при работе в метровом и дециметровом диапазонах волн требуется согласующий отрезок длиной не более десяти миллиметров. Небольшие по абсолютной величине изменения длины отрезка кабеля приводят к сравнительно большим относительным изменениям величины С 2 . Поэтому при точной настройке антенны на рабочую частоту требуется изменять длину согласующего отрезка на доли миллиметра. Необходимость подбора длины согласующего отрезка кабеля с точностью до долей миллиметра затрудняет процесс настройки антенны.

Совсем другая ситуация, когда имеем дело с двумя последовательно включенными емкостями: емкостью C 1 и емкостью C 2 . Известно, что последовательным включением двух конденсаторов получаем эквивалентный конденсатор с емкостью меньше, чем емкости каждого конденсатора в отдельности. Теперь при фиксированном значении С 1 , изменяя емкость C 2 в больших пределах, получим изменения величины эквивалентной емкости в небольших пределах.

Исходная длина согласующего отрезка кабеля очевидно должна быть большей по сравнению с тем случаем, когда нет этого другого конденсатора. Следовательно, изменение длины согласующего отрезка кабеля теперь в относительных единицах больше, а настройка более точной.

Т.е. настройка антенны на рабочую частоту изменением длины согласующего отрезка кабеля, например, путем его подрезания не вызывает затруднений, т.к. изменения длины выполняется на величины, измеряемые миллиметрами.

Антенна обладает следующим достоинством, заключающимся в том, что с введением в состав антенны согласующего цилиндра повышается электрическая прочность антенны. Наибольшая напряженность электрического поля при возбуждении антенны возникает в согласующем отрезке кабеля. В антенне с согласующим цилиндром разность потенциалов между центральны проводником и кромкой трубы теперь распределяется между двумя конденсаторами, первый из них образован центральным проводником и внешним проводником кабеля, второй конденсатор образован внешним проводником кабеля и согласующим цилиндром. Сумма падений напряжений на этих двух конденсаторах равна разности потенциалов между центральным проводником и кромкой. Т.е. напряжение на каждом из конденсаторов меньше, чем общее напряжение, чем и достигается повышение электрической прочности антенны.

Были изготовлены два образца щелевой цилиндрической антенны. Первый образец содержал проводящий цилиндр с продольной щелью, фидер и согласующий отрезок кабеля. В первом образце не было согласующего цилиндра, первого проводящего хомута и второго проводящего хомута. Внешний проводник согласующего фидера имел гальванический контакт непосредственно с кромкой 4. Второй образец отличается от первого тем, что дополнительно содержит согласующий цилиндр, первый проводящий хомут и второй проводящий хомут. Во втором образце использован согласующий отрезок кабеля большей длины, чем в первом образце. Во втором образце согласующий отрезок кабеля проложен внутри согласующего цилиндра и продолжается за его пределами. Ниже будет приведено описание второго образца, соответствующего настоящему изобретению. При описании образца антенны будем обращаться к обозначениям фиг. 1 и фиг. 2.

Образец антенны состоит из цилиндрического корпуса 2 со щелью 3 с первой кромкой 4 и второй кромкой 5, фидера 6, согласующего отрезка кабеля 10, согласующего цилиндра 9, первого хомута 7 и второго хомута 8 и элементов крепежа.

Корпус 2 длиной 720 мм, диметром 130 мм выполнен из луженой жести толщиной 0,3 мм. Корпус в поперечном сечении имеет вид окружности. В корпусе вырезана щель 3 длиной 640 мм, шириной 30 мм с образованием первой кромки 4 и второй кромки 5, параллельных продольной оси цилиндрического корпуса.

В качестве фидера 6 использован серийный коаксиальный кабель РК-50-2-11.

Согласующий отрезок фидера 10 выполнен в виде короткого отрезка коаксиального кабеля РК-50-2-11. Отрезок 10 коаксиального кабеля расположен внутри согласующего цилиндра 9.

Согласующий цилиндр 9 выполнен из латунной трубки с внутренним диаметром 4 мм. При этом были выполнены измерения при трех длинах трубки: 11,5 мм; 7 мм; 5 мм.

Конец согласующего отрезка кабеля 10, противолежащий щели, разомкнут и ни с чем не соединен. Центральный проводник 11 согласующего отрезка 10 коаксиальной линии выходит из согласующего цилиндра 9 и простирается до середины щели 3.

Фидер 6 закреплен на поверхности цилиндра вдоль прямой, диаметрально противоположной продольной оси щели, изогнут в окрестности точки возбуждения антенны, проложен внутри первою хомута 7 и далее располагается над щелью 3, проложен внутри согласующего цилиндра 9 и далее продолжается за пределами цилиндра 9. Наружная изоляция фидера надрезана и снята на длине щели. Внешний проводник (оплетка) разрезан по окружности на входе во второй хомут 8, оплетка расчесана в направлении к кромке 4. Расчесанная оплетка равномерно распределена по кругу и припаяна к хомуту 7. Таким образом, внешний проводник фидера 6 гальванически соединен через хомут 7 с первой кромкой 4 щели, а центральный проводник 12 фидера 6 соединен с центральным проводником 11 согласующего отрезка кабеля 10. Второй конец коаксиального фидера 6 заделан в соединитель радиочастотный.

Для крепления фидера 6 к корпусу 2 использованы стандартизованные хомуты, винты и гайки.

Измеренные на образцах значения реальной ReZ и мнимой ImZ частей входного импеданса антенны прототипа и антенны по настоящему изобретению в диапазоне частот приведены в виде графиков на фиг. 4а).

Измеренные на первом и втором образцах антенны зависимости КСВ от частоты приведены в виде графиков на фиг. 4б). График 22 соответствует первому образцу антенны. При этом длина согласующего отрезка кабеля равна 10,5 мм. Графики 23, 24 и 25 соответствуют второму образцу антенны с длиной согласующего цилиндра 11,5 мм, 7 мм и 5 мм, соответственно. При этом длина согласующего отрезка кабеля равна 20,5 мм, 24 мм и 30 мм, соответственно.

При настройке первого образца антенны на резонансную частоту длина согласующего отрезка кабеля изменялась с дискретом 0,25 мм. Изменение длины согласующего отрезка на 0.25 мм приводило к изменению резонансной частоты на 0,5 МГц. При настройке второго образца антенны на резонансную частоту длина согласующего отрезка кабеля изменялась с дискретом 2 мм. Изменение длины согласующего отрезка на 2 мм приводило к изменению резонансной частоты на 0,5 МГц. Как видно из рассмотрения графиков на фиг. 4, антенна, настроенная на одну и ту же резонансную частоту при разных соотношениях длины согласующего цилиндра и длины согласующего отрезка кабеля, имеет практически одну и ту же зависимость КСВ от частоты. Более выгодно применить согласующий цилиндр меньшей длины.

Действительно, приращение DС 2 эквивалентной емкости С 3 можно найти из соотношения:

Из этого соотношения следует: чем меньше емкость согласующего цилиндра С 1 (чем меньше длина согласующего цилиндра), тем меньше изменяется эквивалентная емкость при одних и тех же приращениях емкости С 2 (приращении длины согласующего отрезка кабеля). При это возможно применение более длинных согласующих отрезков кабеля.

С более длинными согласующими отрезками кабеля более удобно настраивать антенну, т.к. при этом можно использовать традиционный инструмент для подрезки кабеля.

Измерения поляризационных характеристик антенны показали, что антенна обладает линейной поляризацией. Выполненные на антенне измерения свидетельствуют о том, что антенна свободна от антенного эффекта фидера.

Применение изобретения

Изобретение может быть применено в качестве самостоятельной антенны, в качестве элементов более сложных антенн, излучающих элементов антенных решеток, облучателей зеркальных и линзовых антенн.

Антенна при этом может быть использована либо как самостоятельная антенна, либо в качестве элемента линейной антенной решетки.

Предложенная широкополосная вибраторная антенна оказывается полезной во всех тех случаях, когда требуется либо самостоятельная щелевая антенна, либо излучающий (приемный) элемент более сложного антенного устройства или антенной системы, от которых требуются низкие потери в фидере, высокий кпд антенны, малый уровень кроссполяризационного излучения.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Щелевая цилиндрическая антенна, содержащая проводящий цилиндрический корпус, в котором выполнена продольная щель с первой и второй кромками и фидер, отличающаяся тем, что содержит первый хомут, закрепленный на первой кромке щели с образованием гальванического контакта, второй хомут, закрепленный на второй кромке щели с образованием гальванического контакта, согласующий цилиндр и согласующий отрезок кабеля, согласующий цилиндр закреплен на второй кромке щели и проложен через второй хомут, согласующий отрезок кабеля установлен на второй кромке щели и проложен через согласующий цилиндр, фидер закреплен на поверхности цилиндра вдоль прямой линии, диаметрально противоположной продольной оси щели, с загибом в сторону щели в окрестности точки возбуждения щели и проложен через первый хомут с образованием внешним проводником фидера гальванического контакта с первым хомутом, центральный проводник фидера гальванически соединен с центральным проводником согласующего отрезка кабеля.

2. Щелевая цилиндрическая антенна по п. 1, отличающаяся тем, что согласующий цилиндр выполнен в виде кругового проводящего цилиндра.

образуется короткозамкнутый четвертьволновый отрезок двухпроводной линии. Обладая большим входным сопротивлением, он не позволяет токам ответвляться на внешнюю оболочку фидера. Поскольку сопротивление между точками "а" и "б" велико, то плечи вибратора на частоте излучения электрически развязаны, несмотря на гальваническую связь между ними. Края щелей обычно делают расширяющимися, чтобы обеспечивалось согласование волнового сопротивления фидера с входным сопротивлением вибратора.

λ /2

U-колено (рис. 3.20). Это

изогнутый

коаксиальный фидер

длиной λ /2,

к внутреннему про-

воду которого подсоединяются

плечи вибратора. Внешняя обо-

лочка фидера для питания плеч не

используется и заземляется. На-

пряжения и токи в точках "а" и

λ /2

"б" равны по величине и проти-

воположны по фазе, что и требу-

ется для симмет-

ричного питания антенны. Кроме

симметрирования

U-колено уменьшает

входное сопротивление вибратора в 4 раза. В связи с этим его удобно применять для питания петлевого вибратора Пистелькорса, входное сопротивление которого составляет 300 Ом, стандартным фидером с ρ ф =75 Ом.

3 . 2 . Щелевые антенны

3.2.1. Типы щелевых антенн. Особенности их конструкции

Щелевая антенна представляет собой узкую щель, прорезанную в металлической поверхности экрана, оболочке резонатора или волновода. Ширина щели d<<λ , длина обычно близка к половине волны. Щели прорезаются так, чтобы они пересекали линии поверхностного тока, текущего по внутренней стенке волновода или резонатора (рис. 3.21). Возможны различные положения щелей (см. рис. 3.21): поперечная (1), продольная (2), наклонная (3), и разнообразные их формы: прямолинейные, уголковые, гантельные, крестообразные (рис. 3.22).

Высокочастотный поверхностный ток, пересекая щель, индуцирует по ее краям переменные заряды (напряжение), а на обратной (наружной) сторо-

не поверхности возбуждаются токи. Электрическое поле в щели и токи на поверхности являются источниками излучения и формируют в пространстве

электромагнитное поле.

Простейшими

являются

ных размеров со щелью,

резонаторно-щелевые

и волноводно-щелевые

Возбуждение

луволновых щелей в эк-

осуществляется в

метровом

диапазоне

помощью симметричной

двухпроводной линии, а

а в дециметровом – с помощью коаксиальной линии передачи. При этом внешний проводник присоединяется к одной кромке щели, а внутренний – к другой. Для согласования линии передачи с антенной точку питания смещают от середины щели к ее краю. Такая антенна может излучать в обе полусферы. В сантиметровом диапазоне и прилегающей к нему части дециметрового диапазона применяют резонаторные и волноводно-щелевые антенны (см. рис. 3.21, 3.22). В коаксиальных волноводах возбуждаются только поперечные или наклонные щели, в прямоугольных возможны различные варианты размещения щелей (см. рис. 3.21).

Ширина щели оказывает влияние на активную и реактивную части входного сопротивления. Обе составляющие возрастают с увеличением ширины щели. Поэтому для компенсации Х вх надо уменьшать длину щели (укорачивать ее). Рост R вх приводит к расширению полосы пропускания щелевой антенны. Обычно ширина щели d выбирается в диапазоне (0,03…0,15)λ . Для дополнительного расширения полосы пропускания применяют гантельные щели и специальные конструкции возбуждающих устройств.

Помимо диапазонности на выбор ширины щели влияет условие обеспечения электрической прочности. Концентрация электрических зарядов на кромках щели приводит к местным перенапряжениям и возникновению элек-

где E щ max - напряженность электрического поля в пучности. Принимая E щ max = E пр (напряженность пробоя, для сухого воздуха E пр =30кВ/м), находим

d min= U щ max/ E пр.

На практике выбирают d ≥ K зап d min , где K зап =2…4 - коэффициент запа-

Щели более сложной формы, чем прямоугольные, можно рассматривать как комбинации простых. Они используются для получения электромагнитных волн с требуемыми поляризационными свойствами. Например, крестообразная щель позволяет получить антенну с эллиптической и круговой поляризацией. Направление вращения зависит от направления смещения щели от оси широкой стенки волновода.

Щелевые антенны отличаются простотой конструкции, высокой надежностью и отсутствием выступающих частей, что позволяет использовать их в летательных аппаратах и наземных антенных системах в качестве самостоятельных антенн, облучателей сложных антенных систем и элементов антенных решеток.

3.2.2. Одиночная щель. Принцип двойственности Пистелькорса

Рассмотрим характеристики и параметры так называемой идеальной щелевой антенны, т.е. одиночной щели, прорезанной в идеально проводящем плоском экране. Расчет поля такой антенны с помощью уравнений электродинамики представляет значительные трудности. Он существенно облегчается, если воспользоваться принципом двойственности, сформулированным Пистелькорсом в 1944 году. Этот принцип основан на известной из теории электромагнитного поля перестановочной двойственности уравнений Максвелла. Для щели эти уравнения имеют вид:

Если экран убрать, а щель заменить идеальным плоским вибратором таких же размеров, как щель (рис. 3.23), и с таким же распределением тока, как распределение напряжения вдоль щели (эквивалентным вибратором, вырезанным из экрана для получения щели), то поле, излучаемое им, также бу-

дет удовлетворять уравнениям Максвелла

rotHr B = iωε 0 EB ,

rotEB = − iωμ 0 H B ,

но уже при других граничных условиях:

на месте экрана - E τ

≠ 0, H τ = 0 ; на вибраторе - E τ B = 0, H τ B ≠ 0 . (3.29)

Сравнивая граничные условия щели (3.27) и эквивалентного вибратора (3.29), можно убедиться, что структуры электрического поля вблизи щели и магнитного поля вблизи вибратора совпадают. Граничные условия для эквивалентного вибратора получаются из граничных условий для щели путем перестановки Е ↔ Н . С учетом вышеизложенного для полного поля во всем пространстве можно записать:

E r щ = C 1 H B , H щ = C 2 E B ,

где С 1 и С 2 – постоянные коэффициенты.

На практике обычно используют полуволновые щели. При этом независимо от способа возбуждения амплитуда электрического поля в щели максимальна в центре и спадает к краям, т.е. соответствует закону распределения тока в полуволновом вибраторе. Для узкой щели (тонкого вибратора) граничные условия, а значит, и постоянные коэффициенты можно выразить че-

рез напряжение в центре щели U 0 и ток в центре вибратора I 0 (см. рис. 3.23):

U 0 , H

Откуда C = 2 U 0 .

Тогда первое выражение в (3.31) перепишется в виде:

E щ =

H B .

Таким образом, принцип двойственности применительно к щелевым антеннам формулируется так: электрическое поле щелевой антенны с точностью до постоянного множителя совпадает с магнитным полем дополнительного вибратора таких же размеров, как щель, и с таким же амплитудным распределением.

Это означает, что ЭМП щели и эквивалентного вибратора отличаются

между собой только поворотом на 90° соответствующих векторов E r щ и E B ,

H r щ и H B .

Применяя принцип двойственности, можно записать для диаграмм направленности:

F щ(θ ) H = F B (θ ) E ;

F щ(θ ) E = F B (θ ) H ,

где F щ (θ ) H , F щ (θ ) E - нормированные ДН щели в плоскостях Н и Е соот-

ветственно; F B (θ ) H , F B (θ ) E - соответствующие нормированные ДН полуволнового вибратора.

При отсчете угла θ от нормали к плоскости щели диаграмма направленности полуволновой щели запишется в соответствии с равенством (3.33) в виде:

cos(π sinθ )

F щ(θ ) H =

F щ (θ )E = 1.y

меры экрана сущест-

форму ДН, и их под-

ректировать

плоскостях.

ротивление щели, так же как и вибратора, носит комплексный характер и зависит от ее размеров (длины 2l и ширины d ). Величины R щ вх и X щ вх подсчитаны для разных значений l /λ и приводятся в виде графиков в справочной и учебной литературе. Реактивная составляющая щели носит емкостной характер. Настройка щели тем не менее производится также ее укорочением. Величина укорочения подсчитывается по формуле:

ln(2λ π d )

Как следует из (3.35), более широкие щели укорачиваются на большую величину.

Входное сопротивление щели связано со входным сопротивлением дополняющего ее вибратора. Эту связь удобнее выражать через комплексную входную проводимость щели:

Z вхв

(60π )2

Таким образом, входная проводимость щели определяется выражени-

(60π )2

где ρ A = 120 ln

− 0,577

Волновое сопротивление щели.

π d

Комплексная входная проводимость полуволновой щели

  • Перевод

Статья на перевод предложена alessandro893 . Материал взят с обширного справочного сайта, описывающего, в частности, принципы работы и устройство радаров.

Антенна – это электрическое устройство, преобразующее электроэнергию в радиоволны и наоборот. Антенна используется не только в радарах, но и в глушилках, системах предупреждения об облучении и в системах коммуникаций. При передаче антенна концентрирует энергию передатчика радара и формирует луч, направляемый в нужную сторону. При приёме антенна собирает возвращающуюся энергию радара, содержащуюся в отражённых сигналах, и передаёт их на приёмник. Антенны часто различаются по форме луча и эффективности.


Слева – изотропная антенна, справа – направленная

Дипольная антенна




Дипольная антенна, или диполь – самый простой и популярный класс антенн. Состоит из двух одинаковых проводников, проводов или стержней, обычно с двусторонней симметрией. У передающих устройств к ней подаётся ток, а у принимающих – принимается сигнал между двумя половинами антенны. Обе стороны фидера у передатчика или приёмника соединены с одним из проводников. Диполи – резонирующие антенны, то есть их элементы служат резонаторами, в которых стоячие волны переходят от одного конца к другому. Так что длина элементов диполя определяется длиной радиоволны.

Диаграмма направленности

Диполи – это ненаправленные антенны. В связи с этим их часто используют в системах связи.

Антенна в виде несимметричного вибратора (монопольная)


Несимметричная антенна представляет собой половину дипольной, и монтируется перпендикулярно проводящей поверхности, горизонтальному отражающему элементу. Коэффициент направленного действия монопольной антенны вдвое больше, чем у дипольной антенны удвоенной длины, поскольку под горизонтальным отражающим элементом нет никакого излучения. В связи с этим КНД такой антенны в два раза выше, и она способна передавать волны дальше, используя ту же самую мощность передачи.

Диаграмма направленности


Антенна "волновой канал ", антенна Яги-Уда, антенна Яги


Диаграмма направленности


Уголковая антенна


Тип антенны, часто используемой на УКВ и УВЧ-передатчиках. Состоит из облучателя (это может быть диполь или массив Яги), укреплённого перед двумя плоскими прямоугольными отражающими экранами, соединёнными под углом, обычно в 90°. В качестве отражателя может выступать лист металла или решётка (для низкочастотных радаров), уменьшающая вес и уменьшающая сопротивление ветру. У уголковых антенн широкий диапазон, а усиление составляет порядка 10-15 дБ.

Диаграмма направленности


Вибраторная логопериодическая (логарифмическая периодическая) антенна, или логопериодическая решетка из симметричных вибраторов


Логопериодическая антенна (ЛПА) состоит из нескольких полуволновых дипольных излучателей постепенно увеличивающейся длины. Каждый состоит из пары металлических стержней. Диполи крепятся близко, один за другим, и подключаются к фидеру параллельно, с противоположными фазами. По виду такая антенна похожа на антенну Яги, но работает она по-другому. Добавление элементов к антенне Яги увеличивает её направленность (усиление), а добавление элементов к ЛПА увеличивает её полосу частот. Её главное преимущество перед другими антеннами – чрезвычайно широкий диапазон рабочих частот. Длины элементов антенны относятся друг к другу по логарифмическому закону. Длина самого длинного из элементов составляет 1/2 от длины волны самой низкой из частот, а самого короткого – 1/2 от длины волны самой высокой частоты.

Диаграмма направленности


Спиральная антенна


Спиральная антенна состоит из проводника, закрученного в виде спирали. Обычно они монтируются над горизонтальным отражающим элементом. Фидер соединяется с нижней частью спирали и горизонтальной плоскостью. Они могут работать в двух режимах – нормальном и осевом.

Нормальный (поперечный) режим: размеры спирали (диаметр и наклон) малы по сравнению с длиной волны передаваемой частоты. Антенна работает так же, как закороченный диполь или монополь, с такой же схемой излучения. Излучение линейно поляризуется параллельно оси спирали. Такой режим используется в компактных антеннах у портативных и мобильных раций.

Осевой режим: размеры спирали сравнимы с длиной волны. Антенна работает как направленная, передавая луч с конца спирали вдоль её оси. Излучает радиоволны круговой поляризации. Часто используется для спутниковой связи.

Диаграмма направленности


Ромбическая антенна


Ромбическая антенна – широкополосная направленная антенна, состоящего из одного-трёх параллельных проводов, закреплённых над землёй в виде ромба, поддерживаемого в каждой вершине вышками или столбами, к которым провода крепятся при помощи изоляторов. Все четыре стороны антенны одинаковой длины, обычно не менее одной длины волны, или длиннее. Часто используются для связи и работы в диапазоне декаметровых волн.

Диаграмма направленности


Двумерная антенная решётка


Многоэлементный массив диполей, используемых в КВ диапазонах (1,6 – 30 МГц), состоящий из рядов и столбцов диполей. Количество рядов может быть 1, 2, 3, 4 или 6. Количество столбцов – 2 или 4. Диполи горизонтально поляризованы, а отражающий экран располагается за массивом диполей для обеспечения усиленного луча. Количество столбцов диполей определяет ширину азимутального луча. Для 2 столбцов ширина диаграммы направленности составляет около 50°, для 4 столбцов - 30°. Главный луч можно отклонять на 15° или 30° для получения максимального охвата в 90°.

Количество рядов и высота самого нижнего элемента над землёй определяет угол возвышения и размер обслуживаемой территории. Массив из двух рядов обладает углом в 20°, а из четырёх – в 10°. Излучение двумерной решётки обычно подходит к ионосфере под небольшим углом, и из-за низкой частоты часто отражается обратно к поверхности земли. Поскольку излучение может многократно отражаться между ионосферой и землёй, действие антенны не ограничено горизонтом. В результате такая антенна часто используется для связи на дальние расстояния.

Диаграмма направленности


Рупорная антенна


Рупорная антенна состоит из расширяющегося металлического волновода в форме рупора, собирающего радиоволны в луч. У рупорных антенн очень широкий диапазон рабочих частот, они могут работать с 20-кратным разрывом его границ – к примеру, от 1 до 20 ГГц. Усиление варьируется от 10 до 25 дБ, и часто они используются в качестве облучателей более крупных антенн.

Диаграмма направленности


Параболическая антенна


Одна из самых популярных антенн для радаров – параболический отражатель. Облучатель располагается в фокусе параболы, и энергия радара направляется на поверхность отражателя. Чаще всего в качестве облучателя используется рупорная антенна, но можно использовать и дипольную, и спиральную.

Поскольку точечный источник энергии находится в фокусе, он преобразуется в волновой фронт постоянной фазы, что делает параболу хорошо приспособленной для использования в радарах. Изменяя размер и форму отражающей поверхности, можно создавать лучи и схемы излучения различной формы. Направленность параболических антенн гораздо лучше, чем у Яги или дипольной, усиление может достигать 30-35 дБ. Главный их недостаток – неприспособленность к низким частотам из-за размера. Ещё один – облучатель может блокировать часть сигнала.

Диаграмма направленности


Антенна Кассегрена


Антенна Кассегрена очень похожа на обычную параболическую, но использует систему из двух отражателей для создания и фокусировки луча радара. Основной отражатель параболический, а вспомогательный – гиперболический. Облучатель находится в одном из двух фокусов гиперболы. Энергия радара из передатчика отражается от вспомогательного отражателя на основной и фокусируется. Возвращающаяся от цели энергия собирается основным отражателем и отражается в виде сходящегося в одной точке луча на вспомогательный. Затем она отражается вспомогательным отражателем и собирается в точке, где расположен облучатель. Чем больше вспомогательный отражатель, тем ближе он может быть к основному. Такая конструкция уменьшает осевые размеры радара, но увеличивает затенение раскрыва. Небольшой вспомогательный отражатель, наоборот, уменьшает затенение раскрыва, но его нужно располагать подальше от основного. Преимущества по сравнению с параболической антенной: компактность (несмотря на наличие второго отражателя, общее расстояние между двумя отражателями меньше, чем расстояние от облучателя до рефлектора параболической антенны), уменьшение потерь (приёмник можно разместить близко от рупорного излучателя), уменьшение интерференции по боковому лепестку для наземных радаров. Основные недостатки: сильнее блокируется луч (размер вспомогательного отражателя и облучателя больше, чем размер облучателя обычной параболической антенны), плохо работает с широким диапазоном волн.

Диаграмма направленности

Антенна Грегори



Слева – антенна Грегори, справа - Кассегрена

Параболическая антенна Грегори очень похожа по структуре на антенну Кассегрена. Отличие в том, что вспомогательный отражатель искривлён в противоположную сторону. Конструкция Грегори может использовать меньший по размерам вспомогательный отражатель по сравнению с антенной Кассегрена, в результате чего перекрывается меньшая часть луча.

Офсетная (асимметричная) антенна


Как следует из названия, излучатель и вспомогательный отражатель (если это антенна Грегори) у офсетной антенны смещены от центра основного отражателя, чтобы не блокировать луч. Такая схема часто используется на параболических антеннах и антеннах Грегори для увеличения эффективности.

Антенна Кассегрена с плоской фазовой пластиной

Ещё одна схема, предназначенная для борьбы с блокированием луча вспомогательным отражателем,- это антенна Кассегрена с плоской пластиной. Она работает с учётом поляризации волн. У электромагнитной волны есть 2 компоненты, магнитная и электрическая, всегда находящиеся перпендикулярно друг другу и направлению движения. Поляризация волны определяется ориентацией электрического поля, она бывает линейной (вертикальной/горизонтальной) или круговой (круговой или эллиптической, закрученной по или против часовой стрелки). Самое интересное в поляризации – это поляризатор, или процесс фильтрации волн, оставляющий только волны, поляризованные в одном направлении или в одной плоскости. Обычно поляризатор изготавливают из материала с параллельным расположением атомов, или это может быть решётка из параллельных проводов, расстояние между которыми меньше, чем длина волны. Часто принимается, что расстояние должно быть примерно в половину длины волны.

Распространённое заблуждение состоит в том, что электромагнитная волна и поляризатор работают схожим образом с колеблющимся тросом и дощатым забором – то есть, к примеру, горизонтально поляризованная волна должна блокироваться экраном с вертикальными щелями.

На самом деле, электромагнитные волны ведут себя не так, как механические. Решётка из параллельных горизонтальных проводов полностью блокирует и отражает горизонтально поляризованную радиоволну и пропускает вертикально поляризованную – и на оборот. Причина следующая: когда электрическое поле, или волна, параллельны проводу, они возбуждают электроны по длина провода, и поскольку длина провода многократно превышает его толщину, электроны могут легко двигаться и поглощают большую часть энергии волны. Движение электронов приведёт к появлению тока, а ток создаст свои волны. Эти волны погасят волны передачи и будут вести себя как отражённые. С другой стороны, когда электрическое поле волны перпендикулярно проводам, оно будет возбуждать электроны по ширине провода. Поскольку электроны не смогут активно двигаться таким образом, отражаться будет очень малая часть энергии.

Важно отметить, что, хотя на большинстве иллюстраций у радиоволн всего 1 магнитное и 1 электрическое поле, это не значит, что они осциллируют строго в одной плоскости. На самом деле можно представлять, что электрические и магнитные поля состоят из нескольких подполей, складывающихся векторно. К примеру, у вертикально поляризованной волны из двух подполей результат сложения их векторов вертикальный. Когда два подполя совпадают по фазе, результирующее электрическое поле всегда будет стационарным в одной плоскости. Но если одно из подполей медленнее другого, тогда результирующее поле начнёт вращаться вокруг направления движения волны (это часто называют эллиптической поляризацией). Если одно подполе медленнее других ровно на четверть длины волны (фаза отличается на 90 градусов), то мы получим круговую поляризацию:

Для преобразования линейной поляризации волны в круговую поляризацию и обратно необходимо замедлить одно из подполей относительно других ровно на четверть длины волны. Для этого чаще всего используется решётка (четвертьволновая фазовая пластина) из параллельных проводов с расстоянием между ними в 1/4 длины волны, расположенных под углом в 45 градусов к горизонтали.
У проходящей через устройство волны линейная поляризация превращается в круговую, а круговая – в линейную.

Работающая по этому принципу антенна Кассегрена с плоской фазовой пластиной состоит из двух отражателей равного размера. Вспомогательный отражает только волны с горизонтальной поляризацией и пропускает волны с вертикальной поляризацией. Основной отражает все волны. Пластина вспомогательного отражателя располагается перед основным. Он состоит из двух частей – это пластина со щелями, идущими под углом в 45°, и пластина с горизонтальными щелями шириной менее 1/4 длины волны.

Допустим, облучатель передаёт волну с круговой поляризацией против часовой стрелки. Волна проходит через четвертьволновую пластину и превращается в волну с горизонтальной поляризацией. Она отражается от горизонтальных проводов. Она опять проходит через четвертьволновую пластину, уже с другой стороны, и для неё провода пластины ориентированы уже зеркально, то есть, будто бы повёрнуты на 90°. Предыдущее изменение поляризации отменяется, так что волна снова приобретает круговую поляризацию против часовой стрелки и идёт обратно к основному отражателю. Отражатель меняет поляризацию с идущей против часовой стрелки на идущую по часовой. Она проходит через горизонтальные щели вспомогательного отражателя без сопротивления и уходит в направлении целей вертикально поляризованной. В режиме приёма всё происходит наоборот.

Щелевая антенна


Хотя у описанных антенн довольно большое усиление по отношению к размеру апертуры, у всех них есть общие недостатки: большая восприимчивость по боковым лепесткам (подверженность мешающим отражениям от земной поверхности и чувствительность к целям с низкой эффективной площадью рассеяния), уменьшение эффективности из-за блокирования луча (проблема с блокированием есть у малых радаров, которые можно использовать на летающих аппаратах; большие радары, где проблема с блокированием меньше, нельзя использовать в воздухе). В результате была придумана новая схема антенны – щелевая. Она выполнена в виде металлической поверхности, обычно плоской, в котором прорезаны отверстия или щели. Когда её облучают на нужной частоте, электромагнитные волны испускаются из каждого слота – то есть, слоты выступают в роли отдельных антенн и формируют массив. Поскольку луч, идущий из каждого слота, слабый, их боковые лепестки также очень малы. Щелевые антенны характеризуются высоким усилением, малыми боковыми лепестками и малым весом. В них могут отсутствовать выступающие части, что в ряде случаев является их важным преимуществом (например, при установке на летательных аппаратах).

Диаграмма направленности


Пассивная фазированная антенная решётка (ПФАР)



Радар с МИГ-31

С ранних времён создания радаров разработчиков преследовала одна проблема: баланс между точностью, дальностью и временем сканирования радара. Она возникает оттого, что у радаров с более узкой шириной пучка повышается точность (увеличивается разрешение) и дальность при той же мощности (концентрация мощности). Но чем меньше ширина пучка, тем дольше радар сканирует всё поле зрения. Более того, радару с большим усилением потребуются антенны большего размера, что неудобно для быстрого сканирования. Для достижения практичной точности на низких частотах радару потребовались бы настолько громадные антенны, что их было бы затруднительно поворачивать с механической точки зрения. Для решения этой проблемы была создана пассивная фазированная антенная решётка. Она полагается не на механику, а на интерференцию волн для управления лучом. Если две или более волн одного типа осциллируют и встречаются в одной точке пространства, суммарная амплитуда волн складывается примерно так же, как складываются волны на воде. В зависимости от фаз этих волн интерференция может усиливать или ослаблять их.

Луч можно формировать и управлять им электронным способом, контролируя разность фаз группы передающих элементов – таким образом можно контролировать, в каких местах происходит усиливающая или ослабляющая интерференция. Из этого следует, что в радаре самолёта для управления лучом из стороны в сторону должно быть не менее двух передающих элементов.

Обычно радар с ПФАР состоит из 1 облучателя, одного МШУ (малошумящего усилителя), одного распределителя мощности, 1000-2000 передающих элементов и равного количества фазовращателей.

Передающими элементами могут быть изотропные или направленные антенны. Некоторые типичные виды передающих элементов:

На первых поколениях истребителей чаще всего использовались патч-антенны (полосковые антенны), поскольку их проще всего разрабатывать.

Современные массивы с активной фазой используют желобковые излучатели из-за их широкополосных возможностей и улучшенного усиления:

Вне зависимости от типа используемой антенны увеличение количества излучающих элементов улучшает характеристики направленности радара.

Как мы знаем, при одинаковой частоте радара увеличение апертуры приводит к уменьшению ширины пучка, что увеличивает дальность и точность. Но у фазированных решёток не стоит увеличивать расстояние между излучающими элементами в попытке увеличения апертуры и уменьшения стоимости радара. Поскольку если расстояние между элементами больше, чем рабочая частота, могут появляться побочные лепестки, заметно ухудшающие эффективность радара.

Самая важная и дорогая часть ПФАР – фазовращатели. Без них невозможно управлять фазой сигнала и направлением луча.

Они бывают разных видов, но в целом их можно разделить на четыре типа.

Фазовращатели с временной задержкой


Простейший тип фазовращателей. Сигналу на прохождение линии передачи нужно время. Эта задержка, равная фазовому сдвигу сигнала, зависит от длины линии передачи, частоты сигнала и фазовой скорости сигнала в передающем материале. Переключая сигнал между двумя или более линиями передач заданной длины, можно управлять фазовым сдвигом. Переключающие элементы – это механические реле, pin-диоды, полевые транзисторы или микроэлектромеханические системы. pin-диоды часто используются из-за высокой скорости, низких потерь и простых цепей смещения, обеспечивающих изменение сопротивления от 10 кОм до 1 Ом.

Задержка, сек = фазовый сдвиг ° / (360 * частота, Гц)

Их недостаток в увеличении фазовой ошибки с увеличением частоты и увеличении размера с уменьшением частоты. Также изменение фазы изменяется в зависимости от частоты, поэтому для слишком малых и больших частот они неприменимы.

Отражательный/квадратурный фазовращатель


Обычно это квадратурное устройство связи, разделяющее входной сигнал на два сигнала, различающихся по фазе на 90°, которые затем отражаются. Затем они комбинируются по фазе на выходе. Эта схема работает благодаря тому, что отражение сигнала от проводящих линий могут быть смещены по фазе по отношению к падавшему сигналу. Сдвиг по фазе изменяется от 0° (открытая цепь, нулевая ёмкость варактора) до -180° (цепь закорочена, ёмкость варактора бесконечна). Такие фазовращателя обладают широким диапазоном работы. Однако физические ограничения варакторов приводят к тому, что на практике сдвиг по фазе может достигать только 160°. Но для большего сдвига возможно комбинировать несколько таких цепей.

Векторный IQ-модулятор


Так же, как и у отражательного фазовращателя, здесь сигнал разделяется на два выхода с 90-градусным смещением фазы. Входящая фаза без смещения называется I-каналом, а квадратура с 90-градусным смещением называется Q-каналом. Затем каждый сигнал проходит через двухфазный модулятор, способный сдвигать фазу сигнала. Каждый сигнал подвергается сдвигу фазы на 0° или 180°, что позволяет выбрать любую пару квадратурных векторов. Затем два сигнала рекомбинируются. Поскольку затухание обоих сигналов можно контролировать, у выходящего сигнала контролируется не только фаза, но и амплитуда.

Фазовращатель на фильтрах верхних/нижних частот


Был изготовлен для решения проблемы фазовращателей с временной задержкой, не способных работать на большом диапазоне частот. Работает путём переключения пути сигнала между фильтрами верхних и нижних частот. Похож на фазовращатель с временной задержкой, только вместо линий передачи используются фильтры. Фильтр верхних частот состоит из последовательности индукторов и конденсаторов, обеспечивающих опережение по фазе. Такой фазовращатель обеспечивает постоянный сдвиг фазы в диапазоне рабочих частот. Также его размер гораздо меньше, чем у предыдущих перечисленных фазовращателей, поэтому он чаще всего используется в радарах.

Если подытожить, то по сравнению с обычной отражающей антенной, основными преимуществами ПФАР будут: высокая скорость сканирования (увеличение количества отслеживаемых целей, уменьшение вероятности обнаружения станцией предупреждения об облучении), оптимизация времени нахождения на цели, высокое усиление и малые боковые лепестки (тяжелее заглушить и обнаружить), случайная последовательность сканирования (сложнее заглушить), возможность использовать особые техники модуляции и обнаружения для извлечения сигнала из шума. Основные недостатки – высокая стоимость, невозможность сканирования шире 60 градусов в ширину (поле зрения стационарного фазового массива – 120 градусов, механический радар может расширить его до 360).

Активная фазированная антенная решётка


Снаружи АФАР (AESA) и ПФАР (PESA) отличить сложно, но внутри они кардинально различаются. ПФАР использует один или два высокомощных усилителя, передающего один сигнал, который затем делится на тысячи путей для тысяч фазовращателей и элементов. Радар с АФАР состоит из тысячи модулей приёма/передачи. Поскольку передатчики находятся непосредственно в самих элементах, у него нет отдельных приёмника и передатчика. Различия в архитектуре представлены на картинке.

У АФАР большинство компонентов, таких, как усилитель слабых сигналов, усилитель большой мощности, дуплексор, фазовращатель уменьшены и собраны в одном корпусе под названием модуля приёма/передачи. Каждый из модулей представляет собой небольшой радар. Архитектура их следующая:

Хотя АФАР (AESA) и ПФАР (PESA) используют интерференцию волн для формирования и отклонения луча, уникальный дизайн АФАР даёт много преимуществ по сравнению с ПФАР. К примеру, усилитель слабого сигнала находится рядом с приёмником, до компонентов, где теряется часть сигнала, поэтому у него отношение сигнал/шум лучше, чем у ПФАР.

Более того, при равных возможностях обнаружения у АФАР меньше рабочий цикл и пиковая мощность. Также, поскольку отдельные модули АФАР не полагаются на один усилитель, они могут одновременно передавать сигналы с разными частотами. В результате АФАР может создавать несколько отдельных лучей, разделяя массив на подмассивы. Возможность работать на нескольких частотах приносит многозадачность и способность развёртывать системы радиоэлектронного подавления в любом месте по отношению к радару. Но формирование слишком большого количества одновременных лучей уменьшает дальность действия радара.

Два главных недостатка АФАР – высокая стоимость и ограниченность поля зрения 60 градусами.

Гибридные электронно-механические фазированная антенные решётки

Очень высокая скорость сканирования ФАР сочетается с ограничением поля зрения. Для решения этой проблемы на современных радарах ФАР располагаются на подвижном диске, что увеличивает поле зрения. Не стоит путать поле зрения с шириной пучка. Ширина пучка относится к лучу радара, а поле зрения – общий размер сканируемого пространства. Узкие пучки часто нужны для улучшения точности и дальности действия, а узкое поле зрения обычно не нужно.

Теги: Добавить метки

Теоретическая часть

1. Назначение и особенности волноводно-щелевых антенн

Волноводно-щелевая антенна (ВЩА) относится к классу линейных (плоских) многоэлементных антенн. Излучающими элементами таких антенн являются щели, прорезаемые в стенках волноводов, объемных резонаторов или металлических основаниях полосковых линий. На практике находят применение ВЩА с неподвижной в пространстве диаграммой направленности (ДН), а также ВЩА с механическим, электромеханическим и электрическим сканированием .

К достоинствам ВЩА можно отнести:

Отсутствие выступающих частей, что позволяет совмещать их излучающую поверхность с внешней поверхностью корпуса летательных аппаратов, не внося при этом дополнительного аэродинамического сопротивления;

Сравнительно несложное возбуждающее устройство и простота в эксплуатации.

Основным недостатком ВЩА является ограниченность диапазонных свойств. При изменении частоты в несканирующей ВЩА луч отклоняется от заданного положения в пространстве, что сопровождается изменением ширины ДН и нарушением согласования антенны с питающим фидером.

2. Основные параметры щели в волноводе

Щель, вырезанная в волноводе, будет возбуждаться, если ее широкая сторона пересекает токи, текущие по внутренним стенкам. При построении ВЩА на основе прямоугольного волновода с основной волной Н 10 необходимо учитывать, что в широкой стенке волновода имеются продольные и поперечные составляющие поверхностного тока, а в узкой стенке – только поперечные. Щели могут быть вырезаны в широкой и узкой стенках волновода.

Рассмотрим щель, расположенную на широкой стенке волновода продольно по отношению к осевой (средней) линии широкой стенки (рис.1).

Такая щель возбуждается поперечной составляющей тока, если она смещена относительно средней линии на расстояние х 1 . При х 1 =0 излучение щели отсутствует. Изменяя величину смещения щели х 1 , можно регулировать интенсивность ее излучения.

При возбуждении щели токами, текущими по внутренним стенкам волновода, происходит излучение электромагнитной энергии как во внешнее пространство, так и в волновод. Для анализа работы щели вводят понятия внешней и внутренней проводимостей щели, определяемых внешним и внутренним излучением щели соответственно. Зная величины данных проводимостей, можно определить резонансную частоту щелей разной длины и проследить ее зависимость от расположения на стенке волновода.

Как известно, щель, прорезанная в волноводе, нарушает режим его работы, вызывая отражение энергии: часть ее излучается, остальная проходит дальше по волноводу. Таким образом, можно считать, что щель служит нагрузкой для волновода, на которой рассеивается часть мощности, эквивалентной мощности излучения. Поэтому для упрощения анализа можно заменить волновод эквивалентной двухпроводной линией, в которую включены нагрузки параллельно или последовательно в зависимости от типа щели (продольная щель эквивалентна параллельному включению, поперечная щель – последовательному).


3. Разновидности ВЩА

По принципу, на котором основана работа ВЩА, различают резонансные и нерезонансные волноводно-щелевые антенны.

В резонансных антеннах расстояние между соседними щелями выбирают равным l В (щели, синфазно связанные с полем волновода) или l В /2 (щели, переменно-фазно связанные с полем волновода), где l В – длина волны в волноводе, и на конце волновода устанавливают короткозамыкающий поршень. Таким образом, резонансные антенны являются синфазными и, следовательно, направление их максимального излучения совпадает с нормалью к продольной оси антенны. Синфазное возбуждение продольных щелей, расположенных по разные стороны относительно средней линии, обеспечивается за счет дополнительного фазового сдвига по фазе на 180°, обусловленного противоположными по направлению токами по обеим сторонам осевой линии широкой стенки волновода.

Резонансную антенну можно хорошо согласовать с питающим фидером в достаточно узкой полосе частот. Действительно, так как каждая щель отдельно не согласована с волноводом, то все отраженные от щелей волны складываются на входе антенны синфазно и коэффициент отражения системы становится большим. Поэтому обычно отказываются от синфазного возбуждения отдельных щелей и выбирают расстояние между ними d¹l В /2.

Характерной особенностью получаемой таким образом нерезонансной волноводно-щелевой антенны (НВЩА) является более широкая полоса частот, в пределах которой имеет место хорошее согласование, так как отдельные отражения при большом числе излучателей почти полностью компенсируются. Однако отличие расстояния между щелями от l В /2 приводит к их несинфазному возбуждению падающей волной и отклонению направления главного максимума излучения от нормали к оси антенны. Для устранения отражения от конца волновода обычно устанавливают оконечную поглощающую нагрузку.

Как было указано выше, НВЩА имеет хорошее согласование с фидером в достаточно широком диапазоне. Исключение составляет случай, когда d»l В /2; при этом отраженные волны складываются в фазе и коэффициент бегущей волны (КБВ) в волноводе резко падает. Подобный характер изменения КБВ при приближении расстояния между щелями к величине l В /2 носит название эффекта нормали.

Недостатком НВЩА являются меньший, чем у резонансных антенн, коэффициент полезного действия (для его увеличения следует повышать интенсивность возбуждения щелей) и не устранимые амплитудные искажения (для их уменьшения следует снижать интенсивность возбуждения щелей). Исходя из этого, интенсивность возбуждения необходимо выбирать из компромиссных соображений.

4. Особенности антенн доплеровского измерения скорости и угла сноса самолета (антенн ДИСС)

Задача по определению истинного местоположения летательного аппарата (ЛА) в пространстве при воздействии на него метеорологических факторов может быть решена, если известны продольная и поперечная составляющие его скорости. Данные величины обычно определяются косвенно путем измерения доплеровских частот. Известно , что радиосигнал частотой f, отраженный от объекта (например, от ЛА), движущегося в пространстве со скоростью V, получает дополнительное приращение по частоте

,

где a - угол между вектором скорости и радиальным направлением на ЛА. Знак доплеровского приращения положительный, если объект движется навстречу источнику радиоизлучения, и отрицательный, если объект удаляется от него.

Антенны ДИСС позволяют, измеряя доплеровские составляющие, определять продольную и поперечную скорости ЛА, и скорость его перемещения в вертикальном направлении. Такие антенны формируют четыре луча так, как показано на рис.2.


Поскольку доплеровские составляющие, вызванные движением ЛА с некоторой скоростью, в передних и задних лучах имеют разный знак, а случайные (помеховые) составляющие в них приблизительно одинаковы, то, вычитая сигналы со второй пары лучей из сигналов первой пары, можно добиться компенсации помехи и, следовательно, повышения точности измерения скорости ЛА.

Антенны доплеровского измерения скорости и угла сноса самолета часто строятся на основе решеток ВЩА. Для защиты от атмосферных осадков и пыли раскрыв антенных решеток закрывают диэлектрической пластиной или помещают всю излучающую систему в радиопрозрачный обтекатель.

антенна волновод щель доплеровский

5. Расчёт ВЩА

5.1 Расчёт широкой стенки волновода

Решим систему уравнений, из которой найдем a и лкр.

а надо выбрать таким чтобы длина волны в волноводе состовляла 0.9 от критической длины волны.

5.2 Расчёт расстояния между щелями d, возьмём цmax=-20 град, d найдём решив уравнение.