Что нужно знать об электричестве новичкам? Основы электротехники для начинающих Основы электрики для начинающих электромонтеров

Электротехника - это как иностранный язык. Кто-то уже давно и в совершенстве владеет им, кто-то только начинает знакомиться, а для кого-то - это пока что недостижимая, но манящая цель. Почему многие хотят познать этот таинственный мир электричества? Всего около 250 лет люди знакомы с ним, но сегодня уже трудно себе представить жизнь без электричества. Чтобы познакомиться с этим миром, и существуют теоретические основы электротехники (ТОЭ) для чайников.

Первое знакомство с электричеством

В конце XVIII века французский ученый Шарль Кулон стал активно исследовать электрические и магнитные явления веществ. Именно он открыл закон электрического заряда, который и назвали в честь него, - кулон.

Сегодня известно, что любое вещество состоит из атомов и вращающихся вокруг них электронов по орбитали. Однако в некоторых веществах электроны удерживаются атомами очень крепко, а в других эта связь слабая, что позволяет электронам свободно отрываться от одних атомов и прикрепляться к другим.

Для понимания, что это такое, можно представить большой город с огромным количеством машин, которые движутся без каких-либо правил. Эти машины движутся хаотично и не могут совершать полезную работу. К счастью, электроны не разбиваются, а отскакивают друг от друга, как мячики. Чтобы получить пользу от этих маленьких тружеников, необходимо выполнить три условия:

  1. Атомы вещества должны свободно отдавать свои электроны.
  2. К этому веществу необходимо приложить силу, которая заставит двигаться электроны в одном направлении.
  3. Цепь, по которой движутся заряженные частицы, должна быть замкнутой.

Именно соблюдение этих трех условий и лежит в основе электротехники для начинающих.

Все элементы состоят из атомов. Атомы можно сравнить с Солнечной системой, только у каждой системы свое количество орбит, и на каждой орбите может находиться сразу несколько планет (электронов). Чем дальше орбита находится от ядра, тем меньшее притяжение испытывают на себе электроны, находящиеся на этой орбите.

Притяжение зависит не от массы ядра, а от разной полярности ядра и электронов . Если ядро имеет заряд +10 единиц, электроны в общей сложности тоже должны иметь 10 единиц, но отрицательного заряда. Если электрон с внешней орбиты улетит, то суммарная энергия электронов будет уже -9 единиц. Простой пример на сложение +10 + (-9) = +1. Получается, что атом имеет положительный заряд.

Бывает и наоборот: ядро имеет сильное притяжение и захватывает «чужой» электрон. Тогда на его внешней орбите появляется «лишний», 11-й электрон. Тот же пример +10 + (-11) = -1. В этом случае атом будет отрицательно заряжен.

Если в электролит опустить два материала, обладающих противоположным зарядом, и к ним подключить через проводник, например, лампочку, то в замкнутой цепи потечет ток, и лампочка загорится. Если цепь разорвать, к примеру, через выключатель, то лампочка потухнет.

Электрический ток получается следующим образом. При воздействии электролита на один из материалов (электрод) в нем возникает излишек электронов, и он становится отрицательно заряженным. Второй электрод, наоборот, при действии электролита отдает электроны и становится положительно заряженным. Каждый электрод соответственно обозначается «+" (избыток электронов) и «-" (нехватка электронов).

Хотя электроны имеют отрицательный заряд, но электрод отмечают «+". Эта путаница произошла на заре электротехники. В то время считали, что перенос заряда происходит положительными частицами. С тех пор было составлено множество схем, и чтобы их не переделывать, оставили все как есть.

В гальванических элементах электрический ток образуется в результате химической реакции. Объединение нескольких элементов называют батареей, такое правило можно найти в электротехнике для «чайников». Если возможен обратный процесс, когда под действием электрического тока в элементе накапливается химическая энергия, то такой элемент называют аккумулятором.

Гальванический элемент изобрел Алессандро Вольта в 1800 году. Он использовал медные и цинковые пластины, опущенные в раствор соли. Это стало прообразом современных аккумуляторов и батарей.

Виды и характеристики тока

После получения первого электричества появилась идея передавать эту энергию на некоторое расстояние, и здесь возникли трудности. Оказывается, электроны, проходя через проводник, теряют часть своей энергии, и чем длиннее проводник, тем больше эти потери. В 1826 году Георг Ом установил закон, отслеживающий взаимоотношение между напряжением, током и сопротивлением. Читается он следующим образом: U=RI. Если словами, то получается: напряжение равно произведению силы тока на сопротивление проводника .

Из уравнения видно, что чем длиннее проводник, который увеличивает сопротивление, тем меньше будет ток и напряжение, следовательно, уменьшится мощность. Устранить сопротивление невозможно, для этого нужно понизить температуру проводника до абсолютного нуля, что осуществимо лишь в лабораторных условиях. Ток необходим для мощности, поэтому его трогать тоже нельзя, остается только повысить напряжение.

Для конца XIX века это была непреодолимая проблема. Ведь в то время не было ни электростанций, вырабатывающих переменный ток, ни трансформаторов. Поэтому инженеры и ученые устремили свой взор на радио, правда, оно сильно отличалось от современного беспроводного. Правительство разных стран не видело выгоды от этих разработок и не спонсировало такие проекты.

Чтобы можно было трансформировать напряжение, увеличивать или уменьшать его, необходим переменный ток. Как это работает, можно увидеть из следующего примера. Если провод свернуть в катушку и внутри неё быстро перемещать магнит, то в катушке возникнет переменный ток. В этом можно убедиться, подключив к концам катушки вольтметр с нулевой отметкой посередине. Стрелка прибора будет отклоняться влево и вправо, это будет свидетельствовать о том, что электроны движутся то в одном направлении, то в другом.

Такой способ получения электроэнергии называется магнитная индукция. Его используют, например, в генераторах и трансформаторах, получая и изменяя ток. По своей форме переменный ток может быть:

  • синусоидальным;
  • импульсным;
  • выпрямленным.

Типы проводников

Первое, что влияет на электрический ток - это проводимость материала. Такая проводимость у разных материалов разная. Условно все вещества можно разделить на три вида:

  • проводник;
  • полупроводник;
  • диэлектрик.

Проводником может быть любое вещество, свободно пропускающее через себя электрический ток. К ним относятся такие твердые материалы, как, например, металл или полуметалл (графит). Жидкие - ртуть, расплавленные металлы, электролиты. А также сюда входят ионизированные газы.

Исходя из этого, проводники делят на два типа проводимости:

  • электронный;
  • ионный.

К электронной проводимости относятся все материалы и вещества, в которых для создания электрического тока используются электроны. К таким элементам относятся металлы и полуметаллы. Хорошо проводит ток и углерод.

В ионной проводимости эту роль выполняет частица, имеющая положительный или отрицательный заряд. Ион - это частица с недостающим или лишним электроном. Одни ионы не прочь захватить «лишний» электрон, а другие не дорожат электронами и поэтому свободно их отдают.

В соответствии с этим такие частицы могут быть отрицательно заряженными и положительно заряженными. Примером служит соленая вода. Основным веществом является дистиллированная вода, которая является изолятором и не проводит ток. При добавлении соли она становится электролитом, то есть проводником.

Полупроводники в обычном состоянии не проводят ток, но при внешнем воздействии (температура, давление, свет и подобное) они начинают пропускать ток, хотя и не так хорошо, как проводники.

Все остальные материалы, не вошедшие в первые два вида, относятся к диэлектрикам или изоляторам. Они в обычных условиях практически не проводят электрический ток. Это объясняется тем, что на внешней орбите электроны очень прочно держатся на своих местах, а места для других электронов нет.

При изучении электрики для «чайников» нужно помнить, что применяются все ранее перечисленные виды материалов. Проводники, в первую очередь, используются для соединения элементов схемы (в том числе в микросхемах). Могут присоединять источник питания к нагрузке (это, например, шнур от холодильника, электропроводка и т. д). Применяются при изготовлении катушек, которые, в свою очередь, могут использоваться в неизменном виде, например, на печатных платах либо в трансформаторах, генераторах, электродвигателях и т. п.

Проводники наиболее многочисленны и многообразны. Почти все радиодетали изготавливаются из них. Для получения варистора, например, может использоваться один полупроводник (карбид кремния или оксид цинка). Есть детали, в состав которых входят проводники разных типов проводимости, например, диоды, стабилитроны, транзисторы.

Особую нишу занимают биметаллы. Это соединение двух или более металлов , у которых разная степень расширения. Когда такая деталь нагревается, то она деформируется, благодаря разному процентному расширению. Обычно используется в токовой защите, например, для защиты электродвигателя от перегрева или отключения прибора по достижению заданной температуры, как в утюге.

Диэлектрики в основном выполняют функцию защиты (например, изоляционные ручки электроинструментов). Также они позволяют изолировать элементы электрической схемы. Печатная плата, на которой крепятся радиодетали, изготавливается из диэлектрика. Провода катушки покрываются изоляционным лаком для предотвращения замыкания между витками.

Однако диэлектрик при добавлении проводника становится полупроводником и может проводить ток. Тот же самый воздух становится проводником во время грозы. Сухое дерево плохо проводит ток, но если его намочить, оно уже не будет безопасным.

Электрический ток играет огромную роль в жизни современного человека, но, с другой стороны, может представлять смертельную опасность. Обнаружить его, например, в проводе, лежащем на земле, очень трудно, для этого нужны специальные приборы и знания. Поэтому при пользовании электрическими приборами нужно соблюдать предельную осторожность.

Человеческое тело состоит преимущественно из воды , но это не дистиллированная вода, которая является диэлектриком. Поэтому для электричества тело становится почти проводником. Получив электрический удар, мышцы сокращаются, что может привести к остановке сердца и дыхания. При дальнейшем действии тока кровь начинает закипать, затем происходит иссушение тела и, наконец, обугливание тканей. Первое, что нужно сделать, - прекратить действие тока, при необходимости оказать первую помощь и вызвать медиков.

В природе образуется статическое напряжение, но оно чаще всего не представляет опасности для человека, за исключением молнии. Зато оно может быть опасно для электронных схем или деталей. Поэтому при работе с микросхемами и полевыми транзисторами пользуются заземленными браслетами.

Содержание:

Существует множество понятий, которые нельзя увидеть собственными глазами и потрогать руками. Наиболее ярким примером служит электротехника, состоящая из сложных схем и малопонятной терминологии. Поэтому очень многие просто отступают перед трудностями предстоящего изучения этой научно-технической дисциплины.

Получить знания в этой области помогут основы электротехники для начинающих, изложенные доступным языком. Подкрепленные историческими фактами и наглядными примерами, они становятся увлекательными и понятными даже для тех, кто впервые столкнулся с незнакомыми понятиями. Постепенно продвигаясь от простого к сложному, вполне возможно изучить представленные материалы и использовать их в практической деятельности.

Понятия и свойства электрического тока

Электрические законы и формулы требуются не только для проведения каких-либо расчетов. Они нужны и тем, кто на практике выполняет операции, связанные с электричеством. Зная основы электротехники можно логическим путем установить причину неисправности и очень быстро ее устранить.

Суть электрического тока заключается в движении заряженных частиц, переносящих электрический заряд от одной до другой точки. Однако при беспорядочном тепловом движении заряженных частиц, по примеру свободных электронов в металлах, переноса заряда не происходит. Перемещение электрического заряда через поперечное сечение проводника происходит лишь при условии участия ионов или электронов в упорядоченном движении.

Электрический ток всегда протекает в определенном направлении. О его наличии свидетельствуют специфические признаки:

  • Нагревание проводника, по которому протекает ток.
  • Изменение химического состава проводника под действием тока.
  • Оказание силового воздействия на соседние токи, намагниченные тела и соседние токи.

Электрический ток может быть постоянным и переменным. В первом случае все его параметры остаются неизменными, а во втором - периодически происходит изменение полярности от положительной к отрицательной. В каждом полупериоде изменяется направление потока электронов. Скорость таких периодических изменений представляет собой частоту, измеряемую в герцах

Основные токовые величины

При возникновении в цепи электрического тока, происходит постоянный перенос заряда через поперечное сечение проводника. Величина заряда, перенесенная за определенную единицу времени, называется , измеряемой в амперах .

Для того чтобы создать и поддерживать движение заряженных частиц, необходимо воздействие силы, приложенной к ним в определенном направлении. В случае прекращения такого действия, прекращается и течение электрического тока. Такая сила получила название электрического поля, еще она известна как . Именно она вызывает разность потенциалов или напряжение на концах проводника и дает толчок движению заряженных частиц. Для измерения этой величины применяется специальная единица - вольт . Существует определенная зависимость между основными величинами, отраженная в законе Ома, который будет рассмотрен подробно.

Важнейшей характеристикой проводника, непосредственно связанной с электрическим током, является сопротивление , измеряемое в омах . Данная величина является своеобразным противодействием проводника течению в нем электрического тока. В результате воздействия сопротивления происходит нагрев проводника. С увеличением длины проводника и уменьшением его сечения, значение сопротивления увеличивается. Величина в 1 Ом возникает, когда разность потенциалов в проводнике составляет 1 В, а сила тока - 1 А.

Закон Ома

Данный закон относится к основным положениям и понятиям электротехники. Он наиболее точно отражает зависимость между такими величинами, как сила тока, напряжение, сопротивление и . Определения этих величин уже были рассмотрены, теперь нужно установить степень их взаимодействия и влияния друг на друга.

Для того чтобы вычислить ту или иную величину, необходимо воспользоваться следующими формулами:

  1. Сила тока: I = U/R (ампер).
  2. Напряжение: U = I x R (вольт).
  3. Сопротивление: R = U/I (ом).

Зависимость этих величин, для лучшего понимания сути процессов, часто сравнивается с гидравлическими характеристиками. Например, внизу бака, наполненного водой, устанавливается клапан с примыкающей к нему трубой. При открытии клапана вода начинает течь, поскольку существует разница между высоким давлением в начале трубы и низким - на ее конце. Точно такая же ситуация возникает на концах проводника в виде разности потенциалов - напряжения, под действием которого электроны двигаются по проводнику. Таким образом, по аналогии, напряжение представляет собой своеобразное электрическое давление.

Силу тока можно сравнить с расходом воды, то есть ее количеством, протекающим через сечение трубы за установленный период времени. При уменьшении диаметра трубы уменьшится и поток воды в связи с увеличением сопротивления. Этот ограниченный поток можно сравнить с электрическим сопротивлением проводника, удерживающим поток электронов в определенных рамках. Взаимодействие тока, напряжения и сопротивления аналогично гидравлическим характеристикам: с изменением одного параметра, происходит изменение всех остальных.

Энергия и мощность в электротехнике

В электротехнике существуют еще и такие понятия, как энергия и мощность , связанные с законом Ома. Сама энергия существует в механической, тепловой, ядерной и электрической форме. В соответствии с законом сохранения энергии, ее невозможно уничтожить или создать. Она может лишь преобразовываться из одной формы в другую. Например, в аудиосистемах осуществляется преобразование электроэнергии в звук и теплоту.

Любые электрические приборы потребляют определенное количество энергии на протяжении установленного промежутка времени. Эта величина индивидуальна для каждого прибора и представляет собой мощность, то есть объем энергии, который может потребить тот или иной прибор. Этот параметр вычисляется по формуле P = I x U, единицей измерения служит . Он означает перемещение одним вольтом через сопротивление в один ом.

Таким образом, основы электротехники для начинающих помогут на первых порах разобраться с основными понятиями и терминами. После этого будет значительно легче использовать полученные знания на практике.

Электрика для чайников: основы электроники

К нам часто обращаются читатели, которые раньше не сталкивались с работами по электричеству, но хотят в этом разобраться. Для этой категории создана рубрика "Электричество для начинающих".

Рисунок 1. Движение электронов в проводнике.

Прежде чем приступить к работам, связанным с электричеством, необходимо немного «подковаться» теоретиче­ски в этом вопросе.

Термин "электричество" подразумевает движение электронов под действием электромагнитного поля.

Главное - понять, что электричест­во - это энергия мельчайших заряженных частиц, которые движутся внутри проводников в определенном направлении (рис. 1).

Постоянный ток практически не меняет своего направления и величины во времени. Допустим, в обычной батарейке постоянный ток. Тогда заряд будет перетекать от минуса к плюсу, не меняясь, пока не иссякнет.

Переменный ток - это ток, который с определенной периодичностью меняет направление движения и величину. Представьте ток как поток воды, те­кущий по трубе. Через какой-то промежуток времени (например, 5 с) вода будет устремляться то в одну сторону, то в другую.

Рисунок 2. Схема устройства трансформатора.

С током это происходит на­много быстрее, 50 раз в секунду (частота 50 Гц). В течение одного периода колебания величина тока повышается до максимума, затем проходит через ноль, а потом происходит обратный процесс, но уже с другим знаком. На вопрос, почему так происходит и зачем нужен такой ток, можно ответить, что получение и передача переменного тока намного проще, чем постоянного. Получение и передача переменного тока тесно связаны с таким устройством, как трансформатор (рис. 2).

Генератор, который вырабатывает переменный ток, по устройству гораздо проще, чем генератор постоянного тока. Кроме того, для передачи энергии на дальнее расстояние переменный ток подходит лучше всего. С его помощью при этом теряется меньше энергии.

При помощи транс­форматора (специаль­ного устройства в виде катушек) переменный ток преобразу­ется с низкого напряжения на высокое, и наоборот, как это представлено на иллюстрации (рис. 3).

Именно по этой причине большинство приборов работает от сети, в которой ток переменный. Однако постоянный ток также применяется достаточно широко: во всех видах батарей, в химической промышленности и некоторых других областях.

Рисунок 3. Схема передачи переменного тока.

Многие слышали такие загадочные слова, как одна фаза, три фазы, ноль, заземление или земля, и знают, что это важные понятия в мире электричества. Однако не все понимают, что они обозначают и какое отношение имеют к окружающей действительности. Тем не менее знать это надо обязательно.

Не углубляясь в технические подробности, которые не нужны домашнему мастеру, можно сказать, что трехфазная сеть - это такой способ передачи электрического тока, когда переменный ток течет по трем проводам, а по одному возвращается назад. Вышесказанное надо немного пояснить. Любая электри­ческая цепь состоит из двух проводов. По одному ток идет к потребителю (например к чайнику), а по другому воз­вращается обратно. Если разомкнуть такую цепь, то ток идти не будет. Вот и все описание однофазной цепи (рис. 4 А).

Тот провод, по которому ток идет, называется фазовым, или просто фазой, а по которому возвращается - нулевым, или нолем. состоит из трех фазовых проводов и одного обратного. Такое возможно потому, что фаза переменного тока в каждом из трех проводов сдвинута по отношению к соседнему на 120° (рис. 4 Б). Более подробно на этот вопрос поможет ответить учебник по электромеханике.

Рисунок 4. Схема электрических цепей.

Передача переменного тока происходит именно при помощи трехфазных сетей. Это выгодно экономически: не нужны еще два нулевых провода. Подходя к потребителю, ток разделяется на три фазы, и каждой из них дается по нолю. Так он попадает в квартиры и дома. Хотя иногда трехфазная сеть заводится прямо в дом. Как правило, речь идет о частном секторе, и такое положение дел имеет свои плюсы и минусы.

Земля, или, правильнее сказать, заземление - третий провод в однофазной сети. В сущности, рабочей нагрузки он не несет, а служит своего рода предо­хранителем.

Например, в случае когда электричество выходит из-под контроля (например, короткое замыкание), возникает угроза пожара или удара током. Чтобы этого не произошло (то есть значение тока не должно превышать безопасный для человека и приборов уровень), вводится заземление. По этому проводу избыток элек­тричества в буквальном смысле слова уходит в землю (рис. 5).

Рисунок 5. Простейшая схема заземления.

Еще один пример. Допустим, в работе электродвигателя стиральной машины возникла небольшая поломка и часть электрического тока попадает на внешнюю металлическую оболочку прибора.

Если заземления нет, этот заряд так и будет блуждать по стиральной машине. Когда человек прикоснется к ней, он моментально станет самым удобным выходом для данной энергии, то есть получит удар током.

При наличии провода заземления в этой ситуации излишний заряд стечет по нему, не причинив никому вреда. В дополнение можно сказать, что нулевой проводник также может быть заземлением и, в принципе, им и является, но только на электростанции.

Ситуация, когда в доме нет заземления, небезопасна. Как с ней справиться, не меняя всю проводку в доме, будет рассказано в дальнейшем.

ВНИМАНИЕ!

Некоторые умельцы, полагаясь на начальные знания по электротехнике, устанавливают нулевой провод как заземляющий. Никогда так не делайте.

При обрыве нулевого провода корпуса заземленных приборов окажутся под напряжением 220 В.

Инженер-электрик. Работал в электрических сетях. Специализировался на устройствах релейной защиты и электроавтоматики. Автор двух книг из серии "Библиотека электромонтёра". Публиковался в электротехнических журналах. В настоящее время проживет в Израиле. 71 год. Пенсионер.

Ha-esh`har str., 8\6, Haifa, 35844, Israel

К читателю

Вероятно, нет необходимости объяснять тебе значение электричества для обеспечения нормальной жизнедеятельности каждого человека. Не будет преувеличением сказать, что сегодня оно является такой же её составной частью, как вода, тепло, пища. И если в доме погас свет, ты, обжигая пальцы о зажжённую спичку, немедленно звонишь к нам.

Долгий и трудный путь проходит электричество прежде, чем попасть в твой дом. Выработанное из топлива на электростанции, оно путешествует через трансформаторные и коммутационные подстанции, через тысячи километров линий, укреплённых на десятках тысяч опор.

Электричество сегодня – это совершенная технология, надёжное и качественное электроснабжение, забота о потребителе и его обслуживание.

Однако, это ещё не всё. Конечное звено в электрической цепочке – это электрооборудование твоего дома. А оно, как и всякое другое, требует некоторых знаний для его правильной эксплуатации. Поэтому мы призываем тебя к сотрудничеству с нами и с этой целью даём некоторые рекомендации и предостережения. Предостережения выделены красным цветом.

Речь пойдёт о следующем:

1. Правовые аспекты. Абонент должен быть ознакомлен со своими правами, обязанностями и ответственностью по отношению к энергоснабжающей организации. То же - по отношению энергоснабжающей организации к нему.

2. Знакомство с квартирной электропроводкой, коммутационной аппаратурой и установочными изделиями.

4. Электричество требует не только определённых знаний, но и строгого соблюдения определённых правил от пользователя. Оно представляет опасность, как для тех, кто не умеет им пользоваться, так и для недисциплинированных «умельцев». Поэтому мы ознакомим тебя с основами электробезопасности.

Мы призываем тебя с пониманием отнестись к нашим рекомендациям и предостережениям. Мы также надеемся, что ты не будешь наносить ущерб упомянутым выше сетевым сооружениям и электрооборудованию.

Желаем тебе всех благ, в том числе и тех, которые даёт электроэнергия.

Все, что нужно знать электрику - самоучке. Самоучитель. Особенности бытовой осветительной электрической сети. Самостоятельное обучение электромонтажу. (10+)

Самоучитель электрика - Основные знания и навыки для выполнения электротехнических и электромонтажных работ

Наверняка я что-то упустил. Могут быть разные частные вопросы по электрике, которые я не осветил. Обязательно пишите вопросы в обсуждение статьи. Я, если смогу, на них отвечу.

Техника безопасности

Если Вы самостоятельно никогда не выполняли электромонтажные работы, то не следует думать, что прочитав этот материал, Вы сможете все сделать правильно, безопасно для себя и будущих пользователей. Статья позволит понять, как устроена бытовая осветительная сеть, уяснить основные принципы ее монтажа. Первый раз электромонтажные работы нужно проводить под наблюдением опытного специалиста. В любом случае, вне зависимости от того, имеете ли Вы официальный допуск, Вы берете на себя ответственность за жизнь, здоровье и безопасность себя и окружающих.

Никогда не работайте с высоким напряжением в одиночку. Всегда должен рядом быть человек, который в критической ситуации сможет обесточить систему, вызвать экстренные службы и оказать первую помощь.

Не следует выполнять работы под напряжением. Это развлечение для опытных профессионалов. Обесточьте сеть, с которой будете работать, убедитесь, что никто не сможет случайно включить электричество, когда Вы будете заниматься монтажом.

Не надейтесь на то, что до Вас проводка была выполнена правильно. Обзаведитесь датчиком (индикатором) фазы. Это такое устройство, похожее на отвертку или шило. У него есть щуп. Если щуп прикасается к проводу, находящемуся под напряжением, то загорается индикатор. Убедитесь, что Вы умеете правильно пользоваться этим датчиком. Есть тонкости. Некоторые датчики правильно работают только если пальцем прижимать специальный контакт на ручке. Перед тем, как начинать работу, с помощью индикатора фазы убедитесь, что проводка обесточена. Я не раз встречал ошибочно выполненные варианты проводки, когда автомат на входе разрывает только один провод, не обеспечивая полное обесточивание сети. Такая ошибка очень опасна, так как, отключив автомат, Вы предполагаете, что сеть обесточена, а это не так. Датчик фазы сразу предупредит Вас об опасности.

Главные неисправности электротехники

Мастера говорят, что в электротехнике есть всего два вида неисправностей. Нет нужного надежного контакта и есть ненужный. Действительно, в электромонтажном деле не бывает случаев, когда две точки сети должны быть связаны определенным сопротивлением. Они либо должны быть соединены, либо не соединены.

Схемы электрических соединений

На схеме приведена типовая двухконтурная проводка. На объект через автомат (A2 ), УЗО (A3 ) и электрический счетчик (A4 ) заведено сетевое напряжение осветительной сети (O1 ). Далее это напряжение разводится на два контура - осветительный и силовой. Оба контура имеют отдельные автоматы (A4 - осветительный контур, A5 - силовой) для их защиты от перегрузок и раздельного отключения при ремонтных работах. Автомат осветительного контура обычно выбирается на меньшую силу тока, чем автомат силового контура. К осветительному контуру подключены лампы (L1 - LN ) и две розетки (S1 , S2 ) для подключения маломощных нагрузок, например, компьютера или телевизора. Эти розетки используются при ремонтных работах на силовом контуре для подключения электроинструмента. Силовой контур разведен на силовые розетки (S3 - SN ).

На схемах место соединения проводников обозначается точкой. Если проводники пересекают друг друга, но точки нет, то это означает, что проводники не соединены, они пересекаются без соединения.

Параллельное и последовательное соединения

Электрические цепи могут быть соединены параллельно и последовательно.

При последовательном соединении электрический ток, выходящий из одной цепи, попадает в другую. Таким образом, через все цепи, соединенные последовательно, протекает одинаковый ток.

При параллельном соединении электрический ток разветвляется на все цепи, соединенные параллельно. Таким образом, суммарный ток равен сумме токов в каждой цепи. Зато на цепи, соединенные параллельно, подается одинаковое напряжение.

На приведенной схеме входной автомат, УЗО, счетчик и вся остальная схема соединены последовательно. В результате автомат может ограничивать силу тока во всей цепи, а счетчик - измерять потребляемую энергию. Оба контура и нагрузки в них соединены параллельно, что позволяет подвести к каждой нагрузке сетевое напряжение, на которое она рассчитана, независимо от других нагрузок.

Здесь приведена принципиальная электрическая схема. Бывают еще монтажные схемы. На них указывается на плане объекта, где должна пройти проводка, где установить щит, где поставить розетки, выключатели и осветительные приборы. Там совсем другие обозначения. Я - не специалист в этих схемах. Информацию о них поищите в других источниках.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!