Собрать генератор сигналов различной формы своими руками. Низкочастотный функциональный генератор. Генераторы на полевых транзисторах

Электронным генератором называют устройство для формирования незатухающих электрических колебаний различной формы, частоты и мощности. Очень часто генераторы выполняют на основе ОУ.

Мультивибратор

Мультивибратором называют генератор напряжения с формой, близкой прямоугольной. Его название отражает тот факт, что такое напряжение при разложении в ряд Фурье представляется рядом, содержащим много высших гармоник (мульти – много).

По характеристике ОУ (см. рис. 2.13, б) видно, что выходное напряжение усилителя линейно зависит от входного только в очень узком диапазоне – сотнях микровольт. Если входное напряжение выходит за пределы этого диапазона, то выходной сигнал может принимать только два значения: +UВЬ1Х (≈ +12 В) и -UВЬ1Х (≈ -12 В). На этой особенности операционного усилителя основан принцип формирования прямоугольного напряжения мультивибратора (рис. 2.20, а).

Рис. 2.20. Мультивибратор (а) и графики, поясняющие его работу (б)

Предположим, что в момент включения между входами усилителя небольшая (достаточно единиц милливольт) отрицательная разность потенциалов. При этом на выходе сформируется напряжение + UВЫХ, а на неинвертирующий вход с делителя R 1, R 2 будет подан положительный потенциал +U n. Конденсатор начнет заряжаться по цепи "Uвых–R3–С–корпус", стремясь достичь потенциала + Uвых. Потенциал на инвертирующем входе начнет расти до тех пор, пока не превысит потенциал на неинвертирующем входе +U D. В этот момент усилитель сформирует на выходе отрицательное напряжение -U выx и создаст на неинвертирующем входе отрицательный потенциал -U D. Теперь конденсатор начнет перезаряжаться, стремясь достичь потенциала -U выx. Однако как только потенциал на инвертирующем входе станет ниже потенциала на неинвертирующем входе -U D, усилитель сформирует на выходе положительное напряжение +U выx. Такой скачкообразный процесс изменения выходного напряжения с +U вых до -U вых и обратно будет повторяться до тех нор, пока с операционного усилителя не будет снято питающее напряжение. Графики, демонстрирующие описанные процессы, показаны на рис. 2.20, б. Период Г-колебаний определяется постоянной времени заряда конденсатора τ = R 3C, а также тем, насколько потенциал, формируемый делителем R 1, R 2, меньше напряжения Uвых.

Генератор пилообразного напряжения

Напряжение на конденсаторе прямолинейно возрастает, если его заряжать постоянным током, не зависящим от напряжения на нем, и предотвратить влияние на этот ток сопротивления нагрузки, т.е. должно выполняться условие R н >>R. Интегрируя по времени выражение

Условие I c = const в схеме генератора пилообразного напряжения (ГПН) на основе ОУ (рис. 2.21, а) обеспечивается постоянным напряжением Uвх. Пока транзистор заперт, в течение времени t п происходит зарядка конденсатора и напряжение на нем нарастает по прямой. Усилитель, стремясь сделать разность потенциалов на его входах, близкой к нулю, формирует выходное напряжение, повторяющее напряжение на конденсаторе. При подаче импульса Uразр транзистор открывается, и конденсатор быстро разряжается через него за время t разр, после чего процесс зарядки повторяется. Выходное напряжение схемы приобретает пилообразную форму, которая сохраняется до тех пор, пока значение напряжения располагается внутри диапазона от -Uвых до +Uвых.

Кадровая развертка. Задающий генератор пилообразного напряжения (рис. 11.4) собран на транзисторахVT1 иVT2. При включения питающего напряжения конденсаторыС1 иС2 заряжа­ются. Через базовые цепи транзисторов протекают токи, которые выводят транзисторы в режим насыщения. Спустя некоторое время зарядный ток конденсаторов уменьшится и достигнет такого значе­ния, при котором один из транзисторов выйдет из насыщения. Изменение напряжения в цепи коллектора транзистораVT1 закроет транзисторVT2. В результате конденсатор С1, включенный в цепь ООС, будет медленно разряжаться через коллекторную цепь тран­зистораVT1. Так как отрицательно заряженная обкладка конден­сатораС1 подключена к базе транзистораVT1, при разряде конденсатора уменьшается ток базы и в результате автоматически уста­навливается такое соотношение между токами коллектора и базы, которое точно равно коэффициенту передачи тока транзистора. За все время разряда конденсатора ток базы и напряжение на базе меняются незначительно. Ток через резисторыR1 иR2 остается постоянным и не зависит от процессов, протекающих в устройстве. Таким образом, во время прямого хода в генераторе имеется глубо­кая ООС, поддерживающая постоянным ток разряда конденсатораС1, а следовательно, и высокую линейность пилообразного напря­жения. Поскольку коэффициент передачи тока транзистора меняет­ся в зависимости от приложенного напряжения (в первоначальный момент на 1 - 2%), то и нелинейность сигнала будет характеризо­ваться таким же значением. Процесс разряда конденсатора прекра­щается при таких напряжениях на коллекторе, которые требуют для управления током коллектора значительного увеличения тока базы. Коэффициент передачи тока транзистора резко падает. В этом слу­чае на базе транзистораVT2 значительно уменьшается закрываю­щий сигнал. ТранзисторVT2 открывается. В его коллекторе появ­ляется положительное напряжение, открывающее транзистор. Воз­никает лавинообразный процесс. Оба транзистора открыты. Цикл работы повторяется.

Рис. 11.4

Приведенные на схеме номиналы элементов формируют на вы­ходе сигнал с амплитудой больше 10 В и с частотой 50 Гц. Для регулирования амплитуды выходного сигнала и его линейности служат резисторы R7 иR8 соответственно. РезисторR1 меняет ча­стоту задающего генератора.

Генератор двухполярного пилообразного сигнала. Генератор пилообразного сигнала с регулируемым наклоном (рис. 11.5) состо­ит из двух интегрирующих цепочекR5, С1 иR2, С2 и порогового элемента, построенного на транзисторахVT1 иVT2. При включении питания на базе транзистораVT2 возникает сигнал 10 В. По мере заряда конденсатораС1 напряжение уменьшается. В это время на­пряжение на базе транзистораVT1 увеличивается. На разных кон­цах потенциометра существуют сигналы с различными фронтами. Когда напряжение на базах транзисторовVT1 иVT2 сравняется, они откроются и произойдет разряд конденсаторов. После этого начнется новый цикл работы генератора. Наклон выходного пило­образного сигнала можно регулировать с помощью потенциометра в широких пределах.

Рис. 11.5

Рис. 11.6

Управляемый генератор. Генератор пилообразного сигнала (рис. 11.6, а) построен по схеме интегратора с большой постоянной времени, которая определяется выражением т = h 21 Э C 1 R 4 гдеh 21э - коэффициент передачи тока транзистораVT1. ТранзисторVT1 медленно открывается: конденсаторС1 включен в цепь ООС. Напряжение в цепи коллектора уменьшается. В некоторый момент открывается диодVD2 и шунтирует вход транзистораVT2. Тран­зисторVT2 закрывается. Для ускорения процесса закрывания в его коллектор включена динамическая нагрузка - транзисторVT3. Через эмиттер транзистораVT3 конденсаторС1 быстро заряжается. В ре­зультате обратный ход пилообразного сигнала сведен к минимуму. Его длительность составляет менее 5 икс. Длительность пилообраз­ного сигнала можно регулировать с помощью базового тока тран­зистораVT1 (рис. 11.6,6).

Генератор пилообразного сигнала на интеграторе. В основу ге­нератора (рис. 11.7) положен интегратор на транзисторе. В качест­ве порогового и усилительного элементов используется интегральная микросхема К122УД1. Порог срабатывания микросхемы, равный 3 В, устанавливается делителемRl, R2. При включении питания в коллекторе транзистора напряжение не может измениться скач­ком. Отрицательная обратная связь через конденсатор формирует на выходе линейно нарастающий сигнал. Постоянная времени равна т=h 21Э R 3 С 2 , гдеh 21Э - коэффициент передачи тока транзистора. Когда напряжение на коллекторе достигнет 3 В, интегральная мик­росхема переключится. Положительное напряжение на выводе 5 пройдет через диод и откроет транзистор. Произойдет разряд кон­денсатораС2. На коллекторе вновь появится нулевой потенциал.

Рис. 11.7

Схема начнет новый цикл работы. Схема с указанными номиналами элементов формирует выходной сигнал с амплитудой 3 В, частотой следования 100 Гц и длительностью заднего фронта 0,1 мс.

Запускаемый генератор двухполярного сигнала. Для получения высоковольтного сигнала пилообразной формы в генераторе (рис. 11.8) применяют два каскада, на выходах которых формиру­ются падающий и нарастающий сигналы. Каждый каскад состоит из двух транзисторов. Транзисторы VT2 иVT4 являются сбрасыва­ющими,a VT1 иVT3 - активными элементами, в коллекторах ко­торых формируются выходные сигналы. После включения питания напряжение на коллекторе транзистораVT3 не может скачком из­мениться. Этому препятствует ООС через конденсаторС2. Напря­жение на коллекторе будет медленно нарастать. Скорость увеличе­ния напряжения определяется постоянной времени т=Л 2 1ЭCz(Ru-{- +Rт), гдеhzi Э - коэффициент передачи тока транзистора. Рези­сторR7 является ограничивающим. В другом каскаде в первый мо­мент появляется напряжение 100 В. Далее напряжение уменьшается и стремится к нулю. Сброс напряжения в коллекторе транзистораVT1 происходит в тот момент, когда приходит входной импульс. В это время открывается транзисторVT4. Импульсный сигнал с конденсатораС4 проходит на базу транзистораVT2 и открывает его. Происходит одновременный сброс конденсаторовС1 иС2.

Рис. 11.8

Генератор пилообразного сигнала с регулируемой линейностью. В основу генератора (рис. 11.9) положен принцип заряда конденсатораС2 стабилизированным током. Стабилизатор тока построен на транзистореVT2. Сигнал с конденсатораС2 поступает на вход эмиттерного повторителя. При формировании пилообразного сигнала напряжение на конденсаторе увеличивается. Одновременно с повы­шением напряжения на конденсаторе увеличивается ток базы тран­зистораVT3. В результате конденсатор заряжается не постоянным током, как того требует линейное нарастание напряжения, а током, уменьшающимся во времени. На заряд конденсатора влияет входное сопротивление эмиттерного повторителя. Для получения пилообраз­ного напряжения необходимо скомпенсировать ток базы транзисто­ра. Этого можно достигнуть цепью ОС, связывающей эмиттеры тран­зисторовVT2 иVT3. С увеличением выходного сигнала эмиттерного повторителя увеличивается эмнттерный ток транзистораVT2. Меняя сопротивление резистораR9 в цепи ОС, мы можем добиться возра­стающей или убывающей формы выходного сигнала.

Рис. 11.9

Для разряда конденсатора в схеме применяется блокинг-генера-тор. Во время заряда конденсатора диод закрыт питающим напря­жением. Когда транзистор VT1 открыт, конденсаторС2 разряжает­ся через диодVD1. Амплитуда выходного сигнала регулируется ре­зисторомR5, а частота - резисторомR1. Максимальная амплитуда равна 15 В.

Принцип работы релаксационного генератора основан на том, что конденсатор заряжается до определенного напряжения через резистор. При достижении нужного напряжения открывается управляющий элемент. Конденсатор разряжается через другой резистор до напряжения, при котором управляющий элемент закрывается. Так напряжение на конденсаторе нарастает по экспоненциальному закону, затем убывает по экспоненциальному закону.

Подробнее о том, как происходит заряд и разряд конденсатора через резистор , можно прочитать по ссылке.

Вашему вниманию подборка материалов:

Применение в релаксационных генераторах транзисторных аналогов динистора является типичным, так как для расчета и точной работы этого генератора необходимы строго определенные параметры динистора. Некоторые из этих параметров у промышленных динисторов либо имеют большой технологический разброс, либо вообще не нормируются. А сделать аналог со строго заданными параметрами не составляет труда.

Схема генератора пилообразного напряжения

Релаксационный генератор выглядит так:

(A1) - релаксационный генератор на диодном тиристоре (динисторе), (A2) - в схеме A1 динистор заменен на транзисторный аналог. Рассчитать параметры транзисторного аналога в зависимости от используемых транзисторов и номиналов резисторов можно .

Резистор R5 выбирается небольшим (20 - 30 Ом). Он предназначен для ограничения силы тока через динистор или транзисторы в момент их открытия. В расчетах влиянием этого резистора мы пренебрежем и будем считать, что на нем практически не падает напряжение, а конденсатор через него разряжается мгновенно.

Параметры динистора, применяемые в расчетах, описаны в статье вольт-амперная характеристика динистора .

[Минимальное напряжение на выходе, В ] =

[Максимальное напряжение на выходе, В ] =

Расчет сопротивления резистора R4

Для резистора R4 должны выполняться два соотношения:

[Сопротивление R4, кОм ] > 1.1 * ([Напряжение питания, В ] - [Напряжение запирания динистора, В ]) / [Ток удержания, мА ]

Это необходимо для того, чтобы динистор или его аналог надежно запирались, когда конденсатор разрядится.

[Сопротивление R4, кОм ] Напряжение питания, В] - [Напряжение отпирания динистора, В ]) / (1.1 * [Ток отпирания, мА ])

Это необходимо для того, чтобы конденсатор мог зарядиться до напряжения, необходимого для отпирания динистора или его аналога.

Коэффициент 1.1 выбран условно из желания получить 10% запас.

Если два этих условия вступают в противоречие друг с другом, то это означает, что выбрано слишком низкое напряжение питания схемы для данного тиристора.

Расчет частоты релаксационного генератора

Приблизительно оценить частоту генератора можно из следующих соображений. Период колебаний равен сумме времени заряда конденсатора до напряжения отпирания динистора и времени разряда. Мы договорились считать, конденсатор разряжается мгновенно. Таким образом, нам нужно оценить время заряда.

Второй вариант: R1 - 1 кОм, R2, R3 - 200 Ом, R4 - подстроечный 3 кОм (установлен на 2.5 кОм), Напряжение питания - 12 В. Транзисторы - КТ502 , КТ503 .

Требования к нагрузке генератора

Приведенные релаксационные генераторы могут работать с нагрузкой, имеющей высокое входное сопротивление, чтобы выходной ток не влиял на процесс зарядки и разрядки конденсатора.

[Сопротивление нагрузки, кОм ] >> [Сопротивление резистора R4, кОм ]

Luca Bruno, Италия

В широтно-импульсных модуляторах часто используются аналоговые генераторы пилообразного напряжения. Показанная на Рисунке 1 недорогая схема такого генератора может использоваться в маломощных приложениях на частотах до 10 МГц. Схема отличается хорошей линейностью рабочего хода и стабильностью частоты.

Схема сделана на одном инверторе с входным триггером Шмитта, работающем как модифицированный мультивибратор. Выходное напряжение снимается с времязадающего конденсатора C T , напряжение на котором изменяется от нижнего до верхнего порогов инвертора. R T C T заряжается постоянным напряжением, поэтому напряжение на конденсаторе нарастает по экспоненциальному закону и аппроксимировать его прямой линией можно лишь на начальном участке экспоненты.

Простейший способ улучшить линейность пилообразного напряжения - увеличить напряжение питания цепочки R T C T . Для этого в схему добавлен выполняющий функцию генератора подкачки заряда конденсатор C 1 с емкостью, по крайней мере, на порядок большей, чем C T . Во время спадающего фронта «пилы», при низком уровне на выходе инвертора, этот конденсатор быстро заряжается через диод D 1 до напряжения V CC минус прямое падение напряжения на диоде. В это же время конденсатор C T разряжается через диод D 2 .

Когда спадающий фронт напряжения на C T достигнет нижнего порога V T − триггера Шмитта, на выходе инвертора установится высокий логический уровень. Начнется заряд конденсатора C 1 , и на катоде диода D 1 установится сумма напряжений на C 1 и на выходе инвертора. D 1 закроется, и цепь R T C T начнет заряжаться, стремясь сравняться с напряжением на конденсаторе C 1 . В момент, когда напряжение на C T поднимется до верхнего порога V T + триггера Шмитта, выход инвертора вернется в «лог. 0» и цикл начнет повторяться.

Линейность «пилы» пропорциональна сумме напряжений питания V CC и V DD . Поскольку V DD равно +5 В, и фиксировано, улучшать линейность остается только за счет V CC . Оценить степень нелинейности рабочей области пилообразного напряжения можно с помощью следующего выражения:

E NL % - ошибка нелинейности в процентах,
M I - угол наклона рабочей области «пилы» на начальном участке,
M F - угол наклона рабочей области на конечном участке,

V F - прямое падение напряжения на диоде D 1 .

Постоянная времени R T C T определяет частоту пилообразного напряжения F O . Оценить эту частоту, пренебрегая временем разряда C T и любым разрядом C 1 , можно с помощью выражения:

K - константа, определяемая из следующего выражения:

Моделирование схемы со значениями C T =100 пФ и R T =2.2 кОм показывает, что нелинейность пилообразного напряжения равна

  • 28% при V CC = V DD = 5 В,
  • 18% при V CC = 10 В и V DD = 5 В,
  • 14% при V CC = 15 В и V DD = 5 В.

Был собран макет схемы, в которой V DD =V CC =5 В, C T =100 пФ и R T =2.2 кОм. В качестве инвертора использовалась микросхема 74HC14 в стандартном корпусе DIP, имеющая задержку распространения 15 нс (против 4.4. нс у SN74LVC1G14 при напряжении питания 5 В). Измеренная частота равнялась приблизительно 12.7 МГц.

В качестве IC 1 можно использовать любой КМОП инвертор с триггером Шмитта на входе. Однако для повышения стабильности частоты следует выбирать микросхемы из наиболее быстродействующих семейств, с малым временем задержки распространения и большим выходным током. Вполне подойдет выпускаемый

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Департамент образования, науки и молодежной политики

Воронежской области

ГОБУ СПО ВО «Борисоглебский техникум промышленных и информационных технологий»

Курсовой проект

по дисциплине: «Проектирование цифровых устройств»

Тема: «Генератор пилообразного напряжения»

Борисоглебск 2015.

Введение

В наши дни большое место в мире радиоэлектронной аппаратуры занимают телевизионные приемники. Телевидение самая широкая область радиоэлектроники. Сейчас в каждом доме есть телевизор, и он является самым основным источником информации. При конструировании телевизионного приемника согласуются с десятками наук и тем радиоэлектроники. А одной из основных наук является «Импульсная техника» и тема: «Генераторы пилообразного напряжения или тока». В телевизоре это блоки развертки - строчной и кадровой. Генераторы пилообразного напряжения (ГПН) используются также в развертывающих устройствах осциллографа. Генераторы данного вида используются также при ремонте настройке и наладке различного оборудования оргтехники. Тема курсового проекта «Генератор пилообразного напряжения» крайне важна и актуальна, так как данное устройство необходимо на каждом рабочем месте наладчика электронной аппаратуры.

1 . Анализ аналогов генератора пилообразного напряжения.

1.1 Анализ аналога генератора пилообразного напряжения 1

1.1.1 Принципиальная схема

В качестве первого аналога рассмотрим генератор пилообразного напряжения на транзисторах

Рис. 1 - Принципиальная схема ГПН

Генератор (см. рис 1) обеспечивает получение пилообразного напряжения с хорошей линейностью. Пилообразное напряжение снимают непосредственно с конденсатора С2. На резисторе R2 в моменты разряда конденсатора возникают импульсы, которые могут быть использованы для синхронизации.

1.1.2 Принцип работы схемы ГПН

Транзистор Т1 генератора с резистором R1 в цепи эмиттера представляет собой источник тока с выходным сопротивлением, равным нескольким мегомам. Током этого источника заряжается конденсатор С2.

Ввиду большого выходного сопротивления источника тока обеспечивается хорошая линейность напряжения заряда.

Когда напряжение на конденсаторе С2 достигает величины, при которой открывается однопереходный транзистор Т2, происходит быстрый разряд конденсатора.

Частота повторения колебаний регулируется резистором R3 (регулировкой тока заряда конденсатора С2). Эта частота не зависит от колебаний напряжения питания, поскольку и напряжение, при котором открывается транзистор Т2, и ток заряда при этом изменяются пропорционально, компенсируя влияние друг друга на частоту повторения.

Пилообразное напряжение снимают непосредственно с конденсатора С2. На резисторе R2 в моменты разряда конденсатора возникают импульсы, которые могут быть использованы для синхронизации.

При номиналах деталей, указанных на схеме, частота повторения может изменяться в пределах 0,1--4 кГц; размах пилообразного напряжения составляет 10 В, амплитуда синхронизирующих импульсов -- 5 В.

1.1.3 Функциональная схема ГПН

Анализируя принципиальную схему, функционально ее можно разбить на 3 основные части.

Рис. 2 - Части принципиальной схемы

Рис. 3 - Функциональная схема ГПН

РЧК - Регулировка частоты колебаний

ИТ - Источник тока с вых. сопротивлением несколько МОм

1.2 Анализ аналога генератора пилообразного напряжения на микроконтроллере

1.2.1 Принципиальная схема ГПН

Принципиальная схема индикатора выглядит следующим образом:

Рис. 4 - Принципиальная схема ГПН

1.2.2 Принцип работы ГПН

Формирование пилообразного напряжения происходит на конденсаторе C1, зарядный ток которого определяется резисторами R1-R2 и (в гораздо меньшей степени) параметрами транзисторов токового зеркала VT1-VT2. Довольно большое внутреннее сопротивление источника зарядного тока позволяет получить высокую линейность выходного напряжения (фото ниже; масштаб по вертикали 10В/дел).

Основной технической проблемой в таких схемах является цепь разряда конденсатора C1. Обычно для этой цели используются однопереходные транзисторы, туннельные диоды и пр. В приведенной схеме разряд производится... микроконтроллером. Этим достигается простота налаживания устройства и изменения логики его работы, т.к. подбор элементов схемы заменяется адаптацией программы микроконтроллера.

Рис. 5 - Осциллограммы импульсов ГПН

Напряжение на C1 наблюдается компаратором, встроенным в микроконтроллер DD1. Инвертирующий вход компаратора подключен к C1, а не инвертирующий к источнику опорного напряжения на R6-VD1. По достижении напряжения на C1 значения опорного (примерно 3.8В) напряжение на выходе компаратора скачком изменяется от 5В до 0.

Этот момент отслеживается программно и приводит к переконфигурированию порта GP1 микроконтроллера с входа на выход и подачи на него уровня логического 0. В результате конденсатор C1 оказывается замкнутым на землю через открытый транзистор порта и достаточно быстро разряжается. По окончании разряда C1 в начале следующего цикла вывод GP1 вновь конфигурируется на вход и производится формирование короткого прямоугольного синхроимпульса на выводе GP2 амплитудой 5В.

Рис. 6 - Печатная плата ГПН обр. сторона

Длительность разрядного и синхронизирующего импульсов устанавливается программно и моет изменяться в широких пределах, т.к. микроконтроллер тактируется внутренним генератором на частоте 4 МГц. При варьировании сопротивления R1+R2 в пределах 1К - 1М частота выходных импульсов при указанной емкости C1 меняется примерно от 1 кГц до 1 Гц.

Пилообразное напряжение на C1 усиливается ОУ DA1 вплоть до уровня напряжения его питания. Желаемая амплитуда выходного напряжения устанавливается резистором R5. Выбор типа ОУ обусловлен возможностью его работы от источника 44В.

Напряжение 40В для питания ОУ получается из 5В с помощью импульсного преобразователя на микросхеме DA2 включенной по стандартной схеме из ее даташита. Рабочая частота преобразователя 1.3 мГц.

Генератор собран на плате размером 32х36 мм.

Все резисторы и большинство конденсаторов типоразмера 0603. Исключение составляют C4 (0805), C3 (1206), и C5 (танталовый, типоразмер А). Резисторы R2, R5 и разъем J1 установлены на обратной стороне платы (рис 6).

Рис. 7 - Печатная плата ГПН лиц. сторона

Верхний предел частоты в данной схеме ограничен временем разряда C1, что в свою очередь определяется внутренним сопротивлением выходных транзисторов порта. Для ускорения процесса разряда желательно разряжать C1 через отдельный МОП транзистор с малым сопротивлением открытого канала.

При этом можно значительно уменьшить время программной задержки для разряда, которая необходима для обеспечения полной разрядки конденсатора и, соответственно, падения выходного напряжения пилы практически до 0В.

Для терм стабилизации работы генератора желательно в качестве VT1-VT2 применить сборку из двух PNP транзисторов в одном корпусе. При низкой частоте генерируемых импульсов (менее 1 Гц) начинает сказываться конечное сопротивление генератора тока, что приводит к ухудшению линейности пилообразного напряжения. Ситуация может быть улучшена путем установки резисторов в эмиттеры VT1 и VT2.

1.2.3 Функциональная схема ГПН

Анализируя принципиальную схему, функционально ее можно разбить на 4 основные части.

Рис. 8 - Функциональные части принципиальной схемы ГПН

генератор напряжение микроконтроллер индикатор

Исходя из анализа схемы (ГПН) можем составить функциональную схему устройства.

Рис. 9 - Функциональная схема ГПН

ФПН - Формирователь пилообразного напряжения

М - Микроконтроллер

УН - Усилитель напряжения

ИП - Импульсный преобразователь

2 . Разработка структурной функциональной схемы цифрового устройства

2.1 Построение функциональной схемы

На основание анализа существующих приборов, составим собственную схему. Функциональная схема будет выглядеть следующим образом

Рис. 10 - Функциональная схема ГПН

ДН - Делитель напряжения

ТГ - Триггер Шмита

ДЦ - Диодно-резисторная цепь

ИТ - Интегратор

2.2 Ф ункциональные части устройства

Делитель напряжения

Рис. 11 - Делитель напряжения

Делить напряжения состоит из 2 резисторов R1 и R2. На инвертирующий вход ОУ DA1 и прямой вход ОУ DA2 подаётся половина напряжения питания с делителя напряжения. Благодаря нему не требуется дополнительный источник питания

Триггер Шмита

Триггер Шмита собран на операционном усилителе. И играет роль формирователя пилообразного напряжения

Рис. 12 - Триггер Шмита

Диодно-резисторная цепь

С помощью Диодно-резисторной цепи можно задать нужную форму и частоту импульсов.

Рис. 13 - Диодно-резисторная цепь

Интегратор собран на операционном усилителе

Рис. 14 - Интегратор

3 . Принципиальная схема генератора пилообразного напряжения

3.1 Принципиальная схема генератора ГПН

Исходя из рассмотренных выше функциональных узлов можно составить принципиальную схему генератора ГПН.

Рис. 15 - Принципиальная схема ГПН

Элементы на схеме

R1, R2 - Делитель напряжения

R4, R5, D1, D2 - Диодно-резисторная цепь

R6 - С помощью него схема охвачена обратной связью

C1 - Конденсатор обратной связи

C2 - Фильтр

3.2 Описание схемы ГПН

Этот генератор пилообразного напряжения может найти применение в различных схемах, например, в ШИМ, в качестве генератора развёртки, в устройствах сравнения напряжений, временной задержки и расширения импульсов.

Схема генератора изображена на рисунке 15. Он состоит из триггера Шмита на операционном усилителе DA1, и из интегратора, собранного на операционном усилителе DA2. Оба ОУ соединены последовательно через диодно-резисторные цепи D1, D2, R4, R5 и с помощью резистора R6 схема охвачена обратной связью.

На инвертирующий вход ОУ DA1 и прямой вход ОУ DA2 подаётся половина напряжения питания с делителя напряжения, собранного на резисторах R1, R2, что позволяет обойтись одним источником питания.

Номиналы элементов

3.3 Принцип работы ГПН

При включении питания конденсатор С1 разряжен, он начинает заряжаться через цепочку D2R5 и выход усилителя DA1, на котором установилось низкое напряжение, другой вывод конденсатора С1 подключён к выходу ОУ DA2, на котором напряжение растёт. Как только это напряжение достигнет порога переключения триггера Шмита DA1, то триггер переключится и на его выходе установится некоторое напряжение, которое через диод D1 и резистор R4 будут вначале разряжать, а затем заряжать до другой полярности конденсатор С1. Далее процесс повторяется, и схема переходит в автоколебательный режим.

Поскольку резисторы R4 и R5, через которые происходит заряд и разряд конденсатора С1 имеют разный номинал, то и время заряда и разряда конденсатора будет разным, соответственно пилообразное напряжение на выходе ОУ DA1 будет долго нарастать и быстро спадать.

Расчет частоты колебаний

Частота пилообразного сигнала на выходе генератора определяется по формуле

где F - частота в Герцах;

R3, R6, R4, R5 - сопротивления в Омах;

C1 - ёмкость в Фарадах.

Заключение

В соответствии с заданием был разработан проект устройства: «Генератор пилообразного напряжения», который полностью удовлетворяет требуемым параметрам.

Данный прибор состоит из:

ДН - Делитель напряжения.

ТГ - Триггер Шмита.

ДЦ - Диодно-резисторная цепь.

ИТ - Интегратор.

В одном из узлов произведен расчет частоты RC контура.

Целью курсового проекта на тему «Генератор пилообразного.

напряжения» достигнута путём решения поставленных задач, а именно:

Анализ существующих аналогов.

Разработка структурной схемы.

Разработка принципиальной схемы устройства.

Решение поставленных задач достигалась с использованием технической и справочной литературы, а также интернет ресурсов.

Список литературы

1. Справочник. «Интегральные микросхемы и их зарубежные аналоги». Под редакцией Нефёдова А.В. - М. Радиософт. 1994 г.

2. Справочник. «Диоды, тиристоры, транзисторы и микросхемы общего назначения». Воронеж. 1994г.

3. «Электроника» В.И. Лачин, Н.С. Савёлов. Феникс 2000 г.

4. Жмурин Д.Н. Математические основы теории систем: уч. пос. - Новочеркасск, 1998.

5. Генерация и генераторы сигналов. Дьяконов В.А.

Размещено на Allbest.ru

Подобные документы

    Устройство и механизм действия простейшего генератора пилообразного напряжения. Принципиальная схема простейшего ГПН. Классификация устройств со стабилизаторами тока. Разработка принципиальной схемы генератора. Алгоритм и программа функционирования.

    курсовая работа , добавлен 09.06.2011

    Характеристика, параметры и принципы построения генераторов пилообразного напряжения с зарядным транзистором и стабилизатором тока. Исследование зависимости амплитуды выходного сигнала от напряжения питания для схем с биполярным и полевым транзисторами.

    курсовая работа , добавлен 27.02.2012

    Принципы построения генераторов. Выбор и обоснование принципиальной схемы генератора пилообразного напряжения (ГПН). Расчёт элементов устройства, выбор типов и номиналов. Классификация ГПН со стабилизаторами тока, применение дискретных элементов.

    курсовая работа , добавлен 29.06.2012

    Основные характеристики импульса. Генераторы линейно изменяющегося (пилообразного) напряжения, их назначение и область применения. Методы линеаризации пилообразного напряжения. Требования к устройству. Основные характеристики и принцип построения ГПН.

    курсовая работа , добавлен 07.08.2013

    Электронная вычислительная техника. Описание схемы устройства, расчет фантастронного генератора пилообразного напряжения. Генераторы прямоугольных импульсов, линейно-изменяющегося напряжения, ступенчато-изменяющегося напряжения, синусоидальных колебаний.

    дипломная работа , добавлен 17.04.2009

    Проектирование цифрового генератора аналоговых сигналов. Разработка структурной, электрической и функциональной схемы устройства, блок-схемы опроса кнопок и работы генератора. Схема делителя с выходом в виде напряжения на инверсной резистивной матрице.

    курсовая работа , добавлен 05.08.2011

    Разработка структурной схемы свип-генератора. Схема генератора качающейся частоты. Основные характеристики и параметры усилителей. Нелинейные искажения усилителя. Входное и выходное напряжения. Расчёт коэффициента усиления по мощности усилителя.

    курсовая работа , добавлен 28.12.2014

    Схема генератора сигнала треугольной формы. Принципиальная схема устройства. Описание работы программного обеспечения. Внутренний тактовый генератор, работающий от внешнего кварцевого резонатора. Фильтр низких частот. Внешняя цепь тактового генератора.

    курсовая работа , добавлен 19.01.2012

    Методика проектирования генератора на основе микроконтроллера, его технические характеристики. Выбор и обоснование технического решения. Разработка принципиальной и электрической схемы устройства. Эмуляция программы в пакете VMLAB, оценка погрешностей.

    курсовая работа , добавлен 13.06.2010

    Расчет сетевого выпрямителя, силовой части, выбор элементов однотактного конвертора. Расчет предварительного усилителя, генератора пилообразного напряжения. Схема сравнения и усиления сигнала ошибки. Вспомогательный источник питания, емкость конденсатора.