Как улучшить качество питьевой воды. Как улучшить качество воды в вашем доме. Мероприятия по улучшению работы существующих сооружений для улучшения качества воды

Методы обработки воды, с помощью которых достигается доведение качества воды источников водоснабжения до требований СанПиН 2.1.4.2496-09 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества. Гигиенические требования к обеспечению безопасности систем горячего водоснабжения», зависят от качества исходной воды водоисточников и подразделяются на основные и специальные. Основными способами являются: осветление, обесцвечивание, обеззараживание.

Под осветлением и обесцвечиванием понимается устранение из воды взвешенных веществ и окрашенных коллоидов (в основном гумусовых веществ). Путем обеззараживания устраняют содержащиеся в воде водоисточника инфекционные агенты - бактерии, вирусы и др.

В тех случаях, когда применение только основных способов недостаточно, используют специальные методы очистки (обезжелезива- ние, обесфторивание, обессоливание и др.), а также введение некоторых необходимых для организма человека веществ - фторирование, минерализация обессоленных и маломинерализованных вод.

Для удаления химических веществ наиболее эффективен метод сорбционной очистки на активных углях, который также значительно улучшает органолептические свойства воды.

Методы обеззараживания воды подразделяются:

  • ? на химические (реагентные), к которым относятся хлорирование, озонирование, использование олигодинамического действия серебра;
  • ? физические (безреагентные): кипячение, ультрафиолетовое облучение, облучение гамма-лучами и др.

Основным методом для обеззараживания воды на водопроводных станциях в силу технико-экономических причин является хлорирование. Однако все большее внедрение получает метод озонирования, его применение, в том числе в комбинации с хлорированием, имеет преимущества для улучшения качества воды.

При введении хлорсодержащего реагента в воду основное его количество - более 95% расходуется на окисление органических и легко- окисляющихся неорганических веществ, содержащихся в воде. На соединение с протоплазмой бактериальных клеток расходуется всего 2-3% общего количества хлора. Количество хлора, которое при хлорировании 1 л воды расходуется на окисление органических, легкоокис- ляющихся неорганических веществ и обеззараживание бактерий в течение 30 мин, называется хлорпоглощаемостью воды. По окончании процесса связывания хлора содержащимися в воде веществами и бактериями в воде начинает появляться остаточный активный хлор , что является свидетельством завершения процесса хлорирования.

Присутствие в воде, подаваемой в водопроводную сеть, остаточного активного хлора в концентрациях 0,3-0,5 мг/л является гарантией эффективности обеззараживания воды, необходимо для предотвращения вторичного загрязнения в разводящей сети и служит косвенным показателем безопасности воды в эпидемическом отношении.

Общее количество хлора для удовлетворения хлорпоглощаемо- сти воды и обеспечения необходимого количества (0,3-0,5 мг/л свободного активного хлора при нормальном хлорировании и 0,8-1,2 мг/л связанного активного хлора при хлорировании с аммонизацией) остаточного хлора называется хлорпотребностью воды.

В практике водоподготовки используется несколько способов хлорирования воды:

  • ? хлорирование нормальными дозами (по хлорпотребности);
  • ? хлорирование с преаммонизацией и др.;
  • ? гиперхлорирование (доза хлора заведомо превышает хлорпот- ребность).

Процесс обеззараживания обычно является последней ступенью схем обработки воды на водопроводных станциях, однако в ряде случаев при значительном загрязнении исходных вод применяется двойное хлорирование - до и после осветления и обесцвечивания. Для снижения дозы хлора при заключительном хлорировании весьма перспективно комбинирование хлорирования с озонированием.

Хлорирование с преаммонизацией. При этом способе в воду помимо хлора вводится также аммиак, в результате чего происходит образование хлораминов. Этот метод употребляется для улучшения процесса хлорирования:

  • ? при транспортировке воды по трубопроводам на большие расстояния (так как остаточный связанный - хлораминный - хлор обеспечивает более длительный бактерицидный эффект, чем свободный);
  • ? содержании в исходной воде фенолов, которые при взаимодействии с свободным хлором образуют хлорфенольные соединения, придающие воде резкий аптечный запах.

Хлорирование с преаммонизацией приводит к образованию хлораминов, которые из-за более низкого окислительно-восстановительного потенциала в реакцию с фенолами не вступают, поэтому посторонние запахи и не возникают. Однако из-за более слабого действия хлораминного хлора остаточное количество его в воде должно быть выше, чем свободного, и составлять не менее 0,8-1,2 мг/л.

Озонирование является эффективным реагентным способом обеззараживания воды. Являясь сильным окислителем, озон повреждает жизненно важные ферменты микроорганизмов и вызывает их гибель. При этом способе улучшаются вкус и цветность воды. Озонирование не оказывает отрицательного влияния на минеральный состав и pH воды. Избыток озона превращается в кислород, поэтому остаточный озон не опасен для организма человека. Озонирование производится при помощи специальных аппаратов - озонаторов. Контроль за процессом озонирования менее сложен, так как эффект не зависит от температуры и pH воды.

С декабря 2007 г. в Санкт-Петербурге реализована комплексная технология обеззараживания питьевой воды с использованием ультрафиолетового излучения, сочетающая высокий эффект обеззараживания и безопасность для здоровья населения. Подсчитанный Институтом медико-биологических проблем и оценки риска здоровью экономический эффект и предотвращенный ущерб здоровью населения в результате этого составил 742 млн руб.

В связи с тем, что только 1-2% (до 5 л в сутки) человек расходует на питьевые нужды, предполагается разработка и внедрение двух гигиенических нормативов водопроводной и питьевой воды - «Вода безопасная для населения» и «Вода повышенного качества, полезная для взрослого человека, физиологически полноценная».

Первый норматив обеспечит гарантированную безопасность воды в централизованных системах водоснабжения. Второй норматив установит конкретные требования к «абсолютно здоровой воде» во всем ее многообразии полезного воздействия на организм человека. Существует ряд вариантов обеспечения потребителей водой повышенного качества: производство расфасованной воды; устройство локальных автономных систем доочистки и коррекции качества воды.

Качество употребляемой современным человеком воды часто оставляет желать лучшего. Плохая жидкость, которую мы пьем и на которой готовим – это прямой путь к различным заболеваниям, в чем нет ничего хорошего. Как быть? Варианты улучшения качества воды доступны разные.

Во-первых, это дистилляция. Принцип получения очищенной жидкости состоит в перегонке через аппарат наподобие самогонного — водичка кипит, испаряется, охлаждается и снова превращается в обычную. Долго такую воду использовать не рекомендуется, поскольку она вымывает полезные вещества. Самостоятельно делать дистиллят достаточно хлопотно, зато, говорят, на нем отлично проводить разгрузочные дни – организм чистится очень качественно.

Во-вторых, можно использовать воду из скважин. Главное убедиться, что в жидкости не содержится вредных веществ, особенно удобрений, средств, направленных на борьбу с вредителями. В идеале еще нужно провести лабораторную оценку воды – стопроцентно чистую жидкость сегодня встретить невозможно, и что за химия идет в вашем случае, показать может только опытный способ.

Третий способ, используемый для улучшения показателей жидкости – это отстаивание. В ходе отстаивания эффективно «уходят» (то есть отстаиваются, выпадают в осадок) тяжелые фракции и Д2О, не полностью, но все же достаточно хорошо выветривается хлор. Что неплохо в отстаивании – так это его простота и дешевизна, что значительно хуже – сомнительное удобство, длительные сроки ожидания, малое количество воды.

Следующая методика, направленная на улучшение качественных показателей водных ресурсов — настаивание на камнях, содержащих кремень. Речь идет непосредственно про кремень, а также халцедон, аметист, горный хрусталь, агат – их особый состав позволяет не только удалять вредные примеси, но и придавать воде ряд гомеопатических свойств. Кстати, кремниевая вода эффективно усиливает действие настоев на целебных травах. Обратите внимание – камни лучше брать помельче, поскольку у них выше площадь соприкосновения. При постоянном использовании камни следует вымачивать в соляном растворе и ни в коем случае не мыть под водой, температура которой выше 40° С. Процесс настаивания занимает около недели, лучше всего брать для этих целей стеклянную посуду, хотя эмалированные кастрюли тоже подойдут. Нижний слой настоянной воды использовать не рекомендуется. Полученную жидкость кипятить не нужно – она уже пригодна для питья и готовки. Насыщенная кремнием вода положительно воздействует на печень и почки, улучшает обменные процессы, может использоваться для похудения.

Еще одним достаточно распространенным «доморощенным» способом улучшения качеств воды является ее оттаивание. Талая жидкость заметно улучшает работу органов и систем, состав крови и лимфы. Она полезна при тромбофлебитах, повышенном уровне холестерина, при геморрое, проблемах с метаболизмом.
Очистка кислотой, кипячением, активированным углем, серебром – это все тоже работающие методики, которые вы можете использовать по своему усмотрению.

Наиболее эффективными в работе и при этом простыми в использовании являются специальные фильтры и очистные системы. Подобрать оптимальное решение вам поможет профессиональный консультант.

Физические и химические показатели качества воды. При выборе источника водоснабжения учитываются такие физические свойства воды как температура, запах, вкус, мутность и цветность. Причем эти показатели определяются по всем характерным периодам года (весна, лето, осень, зима).

Температура природных вод зависит от их происхождения. В подземных водоисточниках вода имеет постоянную температуру независимо от периода года. Наоборот, температура воды поверхностных водоисточников изменяется по периодам года в достаточно широком диапазоне (от 0,1 °С зимой до 24-26°С летом).

Мутность природных вод зависит, прежде всего, от их происхождения, а также от географических и климатических условий, в которых находится водоисточник. Подземные воды имеют незначительную мутность, не превышающую 1,0-1,5 мг/л, зато воды поверхностных водоисточников почти всегда содержат взвешенные вещества в виде мельчайших частей глины, песка, водорослей, микроорганизмов и других веществ минерального и органического происхождения. Однако, как правило, вода поверхностных водоисточников северных регионов европейской части России, Сибири и частично Дальнего Востока относится к категории маломутных. Для водоисточников центральных и южных регионов страны, наоборот, характерна более высокая мутность воды. Независимо от географических, геологических и гидрологических условий расположения водоисточника мутность воды в реках всегда выше, чем в озерах и водохранилищах. Наибольшая мутность воды в водоисточниках наблюдается во время весенних паводков, в периоды затяжных дождей, а наименьшая - в зимнее время, когда водоисточники покрыты льдом. Измеряется мутность воды в мг/дм 3 .

Цветность воды природных водоисточников обусловлена наличием в ней коллоидных и растворенных органических веществ гумусового происхождения, придающих воде желтый или бурый оттенок. Густота оттенка зависит от концентрации этих веществ в воде.

Гумусовые вещества образуются в результате разложения органических веществ (почвенный, растительный гумус) до более простых химических соединений. В природных водах гумусовые вещества представлены, в основном, органическими гуминовыми и фульво-кислотами, а так же их солями.

Цветность характерна для вод поверхностных водоисточников и практически отсутствует в подземных водах. Однако иногда подземные воды, чаще всего в болотисто-низинных местах с надежными водоупорными горизонтами, обогащаются болотистыми цветными водами и приобретают желтоватую окраску.

Цветность природных вод измеряется в градусах. По уровню цветности воды поверхностные водоисточники могут быть малоцветные (до 30-35°), средней цветности (до 80°) и высокоцветные (свыше 80°). В практике водоснабжения иногда используются водоисточники, цветность воды которых составляет 150-200°.

Большинство рек Северо-запада и Севера России относятся к категории высокоцветных маломутных. Средняя часть страны характеризуется водоисточниками средней цветности и мутности. Вода рек южных регионов России, наоборот, имеет повышенную мутность и сравнительно небольшую цветность. Цветность воды в водоисточнике и количественно и качественно изменяется по периодам года. Во время повышенного стока с прилегающих к водоисточнику территорий (таяние снега, дожди), цветность воды, как правило, повышается, изменяется и соотношение компонентов цветности.

Природным водам свойственны такие качественные показатели, как привкус и запах. Чаше всего природные воды могут обладать горьким и соленым вкусом и практически никогда кислым или сладким. Избыток магниевых солей придает воде горьковатый вкус, а натриевых (поваренная соль) - солоноватый. Соли других металлов, например железа и марганца, придают воде железистый привкус.

Запахи воды могут быть естественного и искусственного происхождения. Естественные запахи вызываются живущими и отмершими в воде организмами, растительными остатками. Основными запахами природных вод являются болотный, землянистый, древесный, травянистый, рыбный, сероводородный и др. Наиболее интенсивные запахи присущи воде водохранилищ и озер. Запахи искусственного происхождения возникают вследствие выпускав водоисточники недостаточно очищенных сточных вод.

К запахам искусственного происхождения можно отнести нефтяной, фенольный, хлорфенольный и др. Интенсивность привкусов и запахов оценивается в баллах.

Химический анализ качества природной воды имеет первостепенное значение при выборе метода очистки ее. К химическим показателям воды относятся: активная реакция (водородный показатель), окисляемость, щелочность, жесткость, концентрация хлоридов, сульфатов, фосфатов, нитратов, нитритов, железа, марганца и др. элементов. Активная реакция воды определяется концентрацией водородных ионов. Она выражает степень кислотности или щелочности воды. Обычно активную реакцию воды выражают водородным показателем рН, который представляет собой отрицательный десятичный логарифм концентрации водородных ионов: - рН = - lg . Для дистиллированной воды рН = 7 (нейтральная среда). Для слабокислой среды рН < 7, а для слабощелочной рН > 7. Обычно для природных вод (поверхностных и подземных) значение рН находится в пределах от 6 до 8,5. Наименьшие значения водородного показателя имеют высокоцветные мягкие воды, а наибольшие - подземные, особенно жесткие.

Окисляемость природных вод вызвана присутствием в них органических веществ, на окисление которых расходуется кислород. Поэтому величина окисляемости численно равна количеству кислорода, пошедшего на окисление находящихся в воде загрязняющих веществ, и выражается в мг/л. Наименьшей величиной окисляемости (~1.5-2мг/л, О 2) характеризуются артезианские воды. Вода чистых озер имеет окисляемость 6-10 мг/л, О 2 , в речной воде окисляемость колеблется в широких пределах и может достичь 50 мг/л и даже более. Повышенной окисляемостью характеризуются высокоцветные воды; в болотистых водах окисляемость может достичь 200 мг/л О 2 и более.

Щелочность воды определяется присутствием в ней гидроксидов (ОН") и анионов угольной кислоты (НСО - з, СО 3 2 ,).

Хлориды и сульфаты содержатся практически во всех природных водах. В подземных водах концентрации этих соединений могут быть весьма значительны, до 1000 мг/л и более. В поверхностных водоисточниках содержание хлоридов и сульфатов обычно колеблется в пределах 50-100 мг/л. Сульфаты и хлориды при определенных концентрациях (300 мг/л и более) являются причиной коррозионной активности воды и разрушающе действуют на бетонные конструкции.

Жесткость природных вод обусловлена присутствием в них солей кальция и магния. Хотя указанные соли и не являются особо вредными для человеческого организма, наличие их в значительном количестве нежелательно, т.к. вода становится малопригодной для хозяйственных нужд и для промышленного водоснабжения. Жесткая вода не пригодна для питания паровых котлов, ее нельзя использовать во многих технологических производственных процессах.

Железо в природных водах находится в виде двухвалентных ионов, органоминеральных коллоидных комплексов и тонкодисперсной взвеси гидроксида железа, а также в виде сульфида железа. Марганец, как правило, находится в воде в виде ионов двухвалентного марганца, способного окисляться в присутствии кислорода, хлора или озона, до четырехвалентного, с образованием гидроксида марганца.

Наличие в воде железа и марганца может приводить к развитию в трубопроводах железистых и марганцевых бактерий, продукты жизнедеятельности которых могут накапливаться в больших количествах и существенно уменьшать сечение водопроводных труб.

Из растворенных в воде газов наиболее важными с точки зрения качества воды являются свободная углекислота, кислород и сероводород. Содержание углекислоты в природных водах колеблется от нескольких единиц до нескольких сотен миллиграммов в 1 л. В зависимости от величины рН воды углекислота встречается в ней в виде углекислого газа либо в виде карбонатов и бикарбонатов. Избыточная углекислота весьма агрессивна по отношению к металлу и бетону:

Концентрация растворенного в воде кислорода может колебаться от 0 до 14 мг/л и зависит от ряда причин (температура воды, парциальное давление, степень загрязненности воды органическими веществами). Кислород интенсифицирует процессы коррозии металлов. Это надо особенно учитывать в теплоэнергетических системах.

Сероводород, как правило, попадает в воду в результате контакта ее с гниющими органическими остатками либо с некоторыми минералами (гипсом, серным колчеданом). Присутствие сероводорода в воде крайне нежелательно как для хозяйственно-питьевого, так и для промышленного водоснабжения.

Ядовитые вещества, в частности тяжелые металлы, попадают в водоисточники в основном с промышленными сточными водами. Когда имеется вероятность их попадания в водоисточник, определение концентрации ядовитых веществ в воде обязательно.

Требования к качеству воды различного назначения. Основные требования, предъявляемые к питьевой воде, предполагают безвредность воды для организма человека, приятный вкус и внешний вид, а также пригодность для хозяйственно-бытовых нужд.

Показатели качества, которым должна удовлетворять питьевая вода, нормируются «Санитарными правилами и нормами (СанПиН) 2. 1.4.559-96. Питьевая вода.»

Вода для охлаждения агрегатов многих производственных процессов не должна давать отложений в трубах и камерах, по которым она проходит, так как отложения затрудняют теплопередачу и уменьшают сечение труб, снижая интенсивность охлаждения.

В воде не должно быть крупной взвеси (песка). В воде не должно быть органических веществ, так как она интенсифицирует процесс биообрастания стенок.

Вода для паросилового хозяйства не должна содержать примесей, которые могут вызвать отложения накипи. По причине образования накипи снижается теплопроводность, ухудшается теплопередача, возможен перегрев стенок паровых котлов.

Из солей, образующих накипь, наиболее вредны и опасны CaSO 4 , СаСО 3 , CaSiO 3 , MgSiO 3 . Эти соли отлагаются на стенках паровых котлов, образуя котельный камень.

Для предотвращения коррозии стенок паровых котлов вода должна обладать достаточным щелочным резервом. Ее концентрация в котловой воде должна составлять не менее 30-50 мг/л.

Особенно нежелательно присутствие в питательной воде котлов высокого давления кремниевой кислоты SiO 2 , которая может образовывать плотную накипь с очень низкой теплопроводностью.

Основные технологические схемы и сооружения для улучшения качества воды.

Природные воды отличаются большим разнообразием загрязнений и их сочетанием. Поэтому для решения проблемы эффективной очистки воды требуются различные технологические схемы и процессы, различные наборы сооружений для реализации этих процессов.

Используемые в практике водоочистки технологические схемы обычно классифицируются на реагентные и безреагентные ; предочистки и глубокой очистки ; на одноступенные и многоступенные ; на напорные и безнапорные .

Реагентная схема очистки природных вод более сложна, нежели безреагентная, зато она обеспечивает более глубокую очистку. Безреагентная схема, как правило, применяется для предочистки природных вод. Чаще всего ее используют при очистке воды для технических целей.

Как реагентная, так и безреагентная технологическая схема очистки могут быть одноступенными и многоступенными, с сооружениями безнапорного и напорного типа.

Основные, чаще всего используемые в практике водоочистки технологические схемы и типы сооружений представлены на рисунке 22.

Отстойники используются в основном как сооружения для предварительной очистки воды от взвешенных частиц минерального и органического происхождения. По типу конструкции и характеру движения воды в сооружении отстойники могут быть горизонтальными, вертикальными или радиальными. В последние десятилетия в практике очистки природных вод стали использоваться специальные полочные отстойники с осаждением взвеси в тонком слое.



Рис. 22.

а) двухступенчатая с горизонтальным отстойником и фильтром: 1 - насосная станция I подъема; 2 - микросетки; 3 - реагентное хозяйство; 4 - смеситель; 5 - камера хлопьеобразования; б - горизонтальный отстойник; 7 - фильтр; 8 - хлораторная; 9 - резервуар чистой воды; 10 - насосы;

б) двухступенчатая с осветлителем и фильтром: 1 - насосная станция I подъема; 2 - микросетки; 3 - реагентное хозяйство; 4 - смеситель; 5 - осветлитель со взвешенным осадком; б - фильтр; 7 - хлораторная; 8 - резервуар чистой воды; 9 - насосы II подъема;

в) одноступенчатая с контактными осветлителями: 1 - насосная станция I подъема; 2 - барабанные сетки; 3 - реагентное хозяйство; 4 - сужающее устройство (смеситель); 5 - контактный осветлитель КО-1; 6 - хлораторная; 7 - резервуар чистой воды; 8 - насосы II подъема

Фильтры, входящие в состав общей технологической схемы водоочистки, выполняют роль сооружений для глубокой доочистки воды от взвешенных веществ, не осевших в отстойниках части коллоидных и растворенных веществ (за счет сил адсорбции и молекулярного взаимодействия).

Вода является неотъемлемой часть нашей жизни. Ежедневно мы выпиваем определенный объем и часто даже не задумываемся о том, что обеззараживание воды и ее качество важная тема. А зря, тяжелые металлы, химические соединения и болезнетворные бактерии способны вызвать необратимые изменения в человеческом организме. На сегодняшний день гигиене воды уделяется серьезное внимание. Современные методы обеззараживания питьевой воды способны очистить ее от бактерий, грибков, вирусов. Они придут на помощь и в том случае, если вода плохо пахнет, имеет посторонние привкусы, цветность.

Предпочтительные методы повышения качества выбирают в зависимости от содержащихся в воде микроорганизмов, уровня загрязненности, источника водоснабжения и других факторов. Обеззараживание направлено на удаление болезнетворных бактерий, которые разрушающе влияют на организм человека.

Очищенная вода прозрачна, не имеет посторонних привкусов и запахов, а также абсолютно безопасна. На практике для борьбы с вредными микроорганизмами применяют способы двух групп, а также их комбинацию:

  • химические;
  • физические;
  • комбинированные.

Для того, чтобы выбрать эффективные методы дезинфекции необходимо провести анализ жидкости. Среди проводимых анализов выделяют:

  • химический;
  • бактериологический;

Применение химического анализа позволяет определить содержание в воде различных химических элементов: нитратов, сульфатов, хлоридов, фторидов и т.д. Все же показатели, анализируемые данным методом, можно подразделить на 4 группы:

  1. Органолептические показатели. Химический анализ воды позволяет определить ее вкус, запах и цвет.
  2. Интегральные показатели – плотность, кислотность и жесткость воды.
  3. Неорганические – различные металлы, содержащиеся в воде.
  4. Органические показатели – содержание в воде веществ, которые могут изменяться под воздействием окислителей.

Бактериологический анализ направлен на выявление различных микроорганизмов: бактерий, вирусов, грибков. Подобный анализ выявляет источник заражения и помогает определить методы обеззараживания.

Химические методы обеззараживания питьевой воды

Химические способы основаны на добавлении в воду различных реагентов-окислителей, которые убивают вредоносные бактерии. Наибольшую популярность среди таких веществ получили хлор, озон, гипохлорит натрия, диоксид хлора.

Для достижения высокого качества важно правильно рассчитать дозу реагента. Малое количество вещества может не возыметь эффекта, а даже наоборот способствовать увеличению числа бактерий. Реагент необходимо вводить с избытком, это позволит уничтожить как имеющиеся микроорганизмы, так и бактерии, попавшие в воду после обеззараживания.

Избыток нужно рассчитывать очень аккуратно, чтобы он не мог нанести вред людям. Наиболее популярные химические методы:

  • хлорирование;
  • озонирование;
  • олигодинамия;
  • полимерные реагенты;
  • иодирование;
  • бромирование.

Хлорирование

Очистка воды хлорированием является традиционным и одним из самых популярных способов очищения воды. Хлорсодержащие вещества активно используют для очистки питьевой воды, воды в бассейнах, дезинфекции помещений.

Свою популярность данный способ приобрел благодаря простоте использования, низкой стоимости, высокой эффективности. Большинство патогенных микроорганизмов, вызывающих различные заболевания, не устойчивы к хлору, который оказывает бактерицидное действие.

Для создания неблагоприятных условий, препятствующих размножению и развитию микроорганизмов, достаточно ввести хлор в небольшом избытке. Избыток хлора способствуют продлению эффекта обеззараживания.

В процессе обработки воды возможны следующие способы хлорирования: предварительное и конечное. Предварительное хлорирование применяют максимально близко к месту забора воды, на данном этапе использование хлора не только обеззараживают воду, но и способствуют удалению ряда химических элементов, в том числе железа и марганца. Конечное хлорирование – последний этап в процессе обработки, во время которого происходит уничтожение вредоносных микроорганизмов посредством хлора.

Также различают нормальное хлорирование и перехлорирование. Нормальное хлорирование применяют для дезинфекции жидкости из источников с хорошим санитарными показателями. Перехлорирование – в случае сильной зараженности воды, а также если она заражена фенолами, которые в случае нормального хлорирования только усугубляют состояние воды. Остатки хлора в таком случаем удаляют дехлорированием.

Хлорирование, как и другие методы, наряду с достоинствами имеет и свои минусы. Попадая в организм человека в избытке, хлор ведет к проблемам с почками, печенью, ЖКТ. Высокая коррозионная активность хлора влечет быстрый износ оборудования. В процессе хлорирования образуются всевозможные побочные продукты. Например, тригалометаны (соединения хлора с веществами органического происхождения), способны вызвать симптомы астмы.

В силу широты применения хлорирования у ряда микроорганизмов сформировалась устойчивость к хлору, поэтому определенный процент заражения воды все же возможен.

Для дезинфекции воды чаще всего используют газообразный хлор, хлорную известь, диоксид хлора и гипохлорит натрия.

Хлор – самый популярный реагент. Используют его в жидком и газообразном виде. Уничтожая болезнетворную микрофлору, устраняет неприятный вкус и запах. Предотвращает рост водорослей и ведет к улучшению качества жидкости.

Для очищения хлором используют хлораторы, в которых газообразный хлор абсорбируют с водой, а далее полученную жидкость доставляют до места применения. Несмотря на популярность данного метода, он является довольно опасным. Транспортировка и хранение высокотоксичного хлора обязывает к соблюдению техники безопасности.

Хлорная известь – вещество, получаемое под воздействием газообразного хлора на сухую гашеную известь. Для обеззараживания жидкости применяют хлорную известь, процент хлора в которой составляет не менее 32-35%. Данный реагент очень опасен для человека, вызывает сложности при производстве. В силу этих и других факторов хлорная известь теряет свою популярность.

Диоксид хлора оказывает бактерицидное воздействие, практически не загрязняет воду. В отличие от хлора не образует тригалометанов. Основная причина, которая тормозит его использование – высокая взрывоопасность, что затрудняет производство, транспортировку и хранение. В настоящее время освоена технология производства на месте применения. Уничтожает все виды микроорганизмов. К недостаткам можно отнести способность образовывать вторичные соединения – хлораты и хлориты.

Гипохлорит натрия применяют в жидком виде. Процент активного хлора в нем в два раза больше, чем в хлорной извести. В отличие от диоксида титана обладает относительной безопасностью при хранении и использовании. Ряд бактерий устойчив к его воздействию. В случае длительного хранения теряет свои свойства. На рынке присутствует в виде жидкого раствора с различным содержанием хлора.

Стоит отметить, что все хлорсодержащие реагенты обладают высокой коррозионной активностью, в связи с чем их не рекомендуется использовать для очищения воды, поступающей в воду через металлические трубопроводы.

Озонирование

Озон, так же как и хлор, является сильным окислителем. Проникая сквозь оболочки микроорганизмов, он разрушает стенки клетки и убивает ее. как с обеззараживанием воды, так и с ее обесцвечиванием и дезодорированные. Способен окислять железо и марганец.

Обладая высоким антисептическим действием, озон разрушает вредные микроорганизмы в сотни раз быстрее, чем другие реагенты. В отличие от хлора, уничтожает практически все известные виды микроорганизмов.

При распаде реагент преобразуется в кислород, который насыщает организм человека на клеточном уровне. Быстрый распад озона в то же время является и недостатком данного метода, поскольку уже через 15-20 мин. после процедуры, вода может подвергнуться повторному заражению. Существует теория, согласно которой при воздействии озона на воду, начинается разложение фенольных групп гуминовых веществ. Они активируют организмы, который до момента обработки находились в спячке.

Насыщаясь озоном вода становится коррозионно-активной. Это ведет к повреждению труб водопровода, сантехники, бытовой техники. В случае ошибочного количества озона возможно образование побочных элементов, которые обладают высокой токсичностью.

Озонирование имеет и другие минусы, к которым стоит отнести высокую стоимость покупки и установки, большие электрозатраты, а также высокий класс опасности озона. При работе с реагентом необходимо соблюдать осторожность и технику безопасности.

Озонирование воды возможно с помощью системы, состоящей из:

  • озоногенератора, в котором происходит процесс выделения озона из кислорода;
  • системы, которая позволяет ввести озон в воду и смешать его с жидкостью;
  • реактора – емкости, в которой происходит взаимодействие озона с водой;
  • деструктора – устройства, которое удаляет остаточный озон, а также приборов, контролирующих озон в воде и воздухе.

Олигодинамия

Олигодинамия – обеззараживание воды посредством воздействия на нее благородных металлов. Наиболее изучено применение золота, серебра и меди.

Самым же популярным металлом в целях уничтожения вредных микроорганизмов является серебро. Его свойства раскрыли еще в древности, в емкость с водой помещали ложку или монетку из серебра и давали такой воде отстояться. Утверждение, что такой метод эффективен довольно спорное.

Теории влияния серебра на микробы не получили окончательного подтверждения. Существует гипотеза, согласно которой клетку разрушают электростатические силы, возникающие между ионами серебра с положительным зарядом и отрицательно заряженными клетками бактерий.

Серебро – тяжелый металл, который в случае накопления в организме может вызывать ряд заболеваний. Достичь антисептического эффекта можно лишь при высоких концентрациях данного металла, которое губительно для организма. Меньшее количество серебра способно только приостановить рост бактерий.

К тому же, практически не чувствительные к серебру спорообразующие бактерии, не доказано его влияние на вирусы. Поэтому применение серебра целесообразно лишь для продления сроков хранения изначально чистой воды.

Другим тяжелым металлом, способным оказывать бактерицидное воздействие, является медь. Еще в древности заметили, что вода, которая стояла в медных сосудах, гораздо дольше сохраняла свои высоковеществ. На практике данный метод используют в основных в бытовых условиях для очищения небольшого объема воды.

Полимерные реагенты

Использование полимерных реагентов – современный метод обеззараживания воды. Он значительно выигрывает у хлорирования и озонирования за счет своей безопасности. Жидкость, очищенная полимерными антисептиками не имеет вкуса и посторонних запахов, не вызывает коррозию металла, не воздействует на организм человека. Данный метод получил распространение в очистке воды в бассейнах. Вода, очищенная полимерным реагентом, не имеет цвета, постороннего вкуса и запаха.

Иодирование и бромирование

Иодирование – метод обеззараживания, использующий иодсодержащие соединения. Дезинфицирующие свойства йода известны медицине с давних времен. Несмотря на то, что данный метод широко известен и неоднократно предпринимались попытки его использования, использование йода в качестве дезинфектора воды популярности не приобрело. Данный метод имеет существенный недостаток, растворяясь в воде, он вызывает специфический запах.

Бром – довольно эффективный реагент, который уничтожает большую часть известных бактерий. Однако, в силу своей высокой стоимости популярностью не пользуется.

Физические методы обеззараживания воды

Физические способы очистки и дезинфекции работают воду без использования реагентов и вмешательства в химический состав. Наиболее популярные физические методы:

  • УФ-облучение;
  • ультразвуковое воздействие;
  • термическая обработка;
  • электроимпульсный способ;

УФ-излучение

Все большую популярность среди методов обеззараживания воды набирает применение УФ-излучения. В основе методики лежит тот факт, что лучи, длина волны у которых 200-295 нм, могут убивать патогенные микроорганизмы. Проникая сквозь клеточную стенку, они воздействуют на нуклеиновые кислоты (РНД и ДНК), а также вызывают нарушения в структуре мембран и клеточных стенок микроорганизмов, что ведет к гибели бактерий.

Для определения дозы излучения необходимо провести бактериологический анализ воды, это позволит выявить виды патогенных микроорганизмов и их восприимчивость к лучам. На эффективность также влияет мощность используемой лампы и уровень поглощения излучения водой.

Доза УФ-излучения равна произведению интенсивности излучения на его продолжительность. Чем выше устойчивость микроорганизмов, тем дольше на них необходимо воздействовать

УФ-излучение не влияет на химический состав воды, не образует побочных соединений, таким образом исключает возможность нанесения вреда человеку.

При использовании данного метода невозможна передозировка, УФ-облучение отличается высокой скоростью реакции, для обеззараживания всего объема жидкости требуется несколько секунд. Не меняя состав воды, излучение способно уничтожить все известные микроорганизмы.

Однако, не лишен данный метод и недостатков. В отличие от хлорирования, обладающего пролонгирующим эффектом, эффективность облучения сохраняется до тех пор, пока лучи воздействуют на воду.

Хороший результат достижим лишь в очищенной воде. На уровень поглощения ультрафиолета влияют содержащиеся в воду примеси. Например, железо способно служить для бактерий своеобразным щитом и «прятать» их от воздействия лучей. Поэтому целесообразно провести предварительную очистку воды.

Система для УФ-излучения состоит из нескольких элементов: выполненной из нержавеющей стали камеры, в которую помещена лампа, защищенная кварцевыми чехлами. Проходя через механизм такой установки, вода постоянно подвергается действию ультрафиолета и полному обеззараживанию.

Ультразвуковое обеззараживание

Ультразвуковое обеззараживание основано на методе кавитации. За счет того, что под воздействием ультразвука происходят резкие перепады давления, микроорганизмы разрушаются. Эффективен ультразвук и для борьбы с водорослями

Данный метод имеет узкий круг использования и находится на стадии освоения. Преимуществом является нечувствительность к высокой мутности и цветности воды, а также возможность воздействовать на большинство форм микроорганизмов.

К сожалению, данный метод применим только для малых объемов воды. Как и УФ-облучение оказывает эффект только в процессе взаимодействия с водой. Не возымело ультразвуковое обеззараживание популярности и в силу необходимости установки сложного и дорого оборудования.

Термическая обработка воды

В домашних условиях термический способ очистки воды – всем известное кипячение. Высокая температура убивает большинство микроорганизмов. В промышленных условиях данный метод неэффективен в силу его громоздкости, больших временных затрат и низкой интенсивности. К тому же, термическая обработка не способна избавить от посторонних привкусов и болезнетворных спор.

Электроимпульсный способ

В основе электроимпульсного способа лежит применение электрических разрядов, которые формируют ударную волну. Под воздействием гидравлического удара микроорганизмы гибнут. Данный метод эффективен как для вегетативных, так и спорообразующих бактерий. Способен достичь результата даже в мутной воде. Кроме того, бактерицидные свойства обработанной воды сохраняются до четырех месяцев.

Минусом является высокая энергоемкость и дороговизна.

Комбинированные методы обеззараживания воды

Для достижения наибольшего эффекта используют комбинированные способы, как правило, реагентные методы сочетают с безреагентными.

Высокую популярность возымело сочетание УФ-облучения с хлорированием. Так, уф-лучи убивают патогенную микрофлору, а хлор препятствует повторному заражению. Данный метод используют как для очистки питьевой воды, так и очистки воды в бассейнах.

Для обеззараживания бассейнов УФ-излучение преимущественно используют с гипохлоритом натрия.

Заменить хлорирование на первом этапе можно озонированием

Другие методы включает в себя окисление в сочетании с тяжелыми металлами. Окислителями могут выступать как хлорсодержащие элементы, так и озон. Суть комбинирования состоит в том, что окислители обивают вредные микробы, а тяжелые металлы позволяют сохранить воду обеззараженной. Существуют и другие способы комплексной дезинфекции воды.

Очистка и обеззараживание воды в бытовых условиях

Часто необходимо очистить воду в небольших количествах прямо здесь и сейчас. Для этих целей используют:

  • растворимые обеззараживающие таблетки;
  • перманганат калия;
  • кремний;
  • подручные цветы, травы.

Обеззараживающие таблетки могут выручить в походных условиях. Как правило, одну таблетку применяют на 1 л. воды. Этот метод можно отнести к химической группе. Чаще всего в основе таких таблеток лежит активный хлор. Время действия таблетки 15-20 минут. В случае сильного загрязнения количество можно удвоить.

Если вдруг таблеток не оказалось, возможно применение обычной марганцовки из расчета 1-2 г. на ведро воды. После того, как вода отстоится, она готова к использованию.

Также бактерицидное действие оказывают природные растения – ромашку, чистотел, зверобой, бруснику.

Еще один реагент – кремний. Поместите его в воду и дайте ей отстояться в течение суток.

Источники водоснабжения их пригодность для обеззараживания

Источники водоснабжения можно разделить на два вида – поверхностные и подземные воды. К первой группе относится вода из рек и озер, морей и водохранилищ.

При анализе пригодности вод для питья, расположенных на поверхности, проводят бактериологический и химический анализ, оценивают состояние дна, температуру, плотность и соленость морской воды, радиоактивность воды и т.д. Немаловажную роль при выбора источника играет нахождение по близости промышленных объектов. Еще один этап оценки источника водозабора – просчет возможных рисков заражения воды.

Состав воды в открытых водоемах зависит от времени года, такая вода содержит различные загрязнения, среди которых и болезнетворные микроорганизмы. Наиболее высок риск заражения водоемов рядом с городами, заводами, фабриками и другими объектами промышленности.

Речная вода очень мутная, отличается цветностью и жесткостью, а также большим количеством микроорганизмов, заражение которыми чаще всего происходит из стоковых вод. В воде из озер и водохранилищ часто встречается цветение из-за развития водорослей. Также такие воды

Особенность поверхностных источников заключается в большой водной поверхности, которая соприкасается с солнечными лучами. С одной стороны, это способствует самоочищению воды, с другой – служит развитию флоры и фауны.

Несмотря на то, что поверхностные воды могу самоочищаться, это не спасает их от механических примесей, также патогенной микрофлоры, поэтому при водозаборе подвергаются тщательному очищению с дальнейшим обеззараживанием.

Другой вид источников водозабора – подземные воды. Содержание микроорганизмов в них минимально. Для обеспечения населения лучше всего подходит родниковая и артезианская вода. Чтобы определить их качество, эксперты анализируют гидрологию слоев горных пород. Особое внимание уделяют санитарному состоянию территории в районе забора воды, так как этого зависит не только качество воды в здесь и сейчас, но и перспектива заражения вредоносными микроорганизмами в дальнейшем.

Артезианская и родниковая вода выигрывает у воды из рек и озер, она защищена от бактерий, содержащихся в стоковых водах, от воздействия солнечных лучей и других факторах, способствующих развитию неблагоприятной микрофлоры.

Нормативные документы водно-санитарного законодательства

Поскольку вода являет собой источник человеческой жизни, ее качеству и санитарному состоянию уделяется серьезное внимание, в том числе на законодательном уровне. Основными документами в данной сфере являются Водный кодекс и Федеральный закон «О санитарно-эпидемиологическом благополучии населения».

Водный кодекс содержит в себе правила по использования и охраны водных объектов. Приводит классификацию подземных и поверхностных вод, определяет меры наказания за нарушение водного законодательства и др.

ФЗ «О санитарно-эпидемиологическом благополучии населения» регламентирует требования к источникам, вода из которых может быть использована для питья и ведения хозяйства.

Также существуют государственные стандарты качества, которые определяют показатели пригодности и выдвигают требования к способам анализа воды:

ГОСТы качества воды

  • ГОСТ Р 51232-98 Вода питьевая. Общие требования к организации и методам контроля качества.
  • ГОСТ 24902-81 Вода хозяйственно-питьевого назначения. Общие требования к полевым методам анализа.
  • ГОСТ 27064-86 Качество вод. Термины и определения.
  • ГОСТ 17.1.1.04-80 Классификация подземных вод по целям водопользования.

СНиПы и требования к воде

Строительные нормы и правила (СНиП) содержат в себе правила по организации внутреннего водопровода и канализации зданий, регламентируют монтаж систем водоснабжения, отопления и т.д.

  • СНиП 2.04.01-85 Внутренний водопровод и канализация зданий.
  • СНиП 3.05.01-85 Внутренние санитарно-технические системы.
  • СНиП 3.05.04-85 Наружные сети и сооружения водоснабжения и канализации.

СанПиНы на водоснабжение

В санитарно-эпидемиологических правилах и нормах (СанПиН) можно найти, какие существует требования к качеству воды как из центрального водопровода, так и воды из колодцев, скважин.

  • СанПиН 2.1.4.559-96 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества.»
  • СанПиН 4630-88 «ПДК и ОДУ вредных веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования»
  • СанПиН 2.1.4.544-96 Требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников.
  • СанПиН 2.2.1/2.1.1.984-00 Санитарно-защитные зоны и санитарная классификация предприятий, сооружений и иных объектов.

Вне зависимости от того, какую воду вы решили пить - фильтрованную, бутилированную, кипяченую - существуют способы улучшить ее качество. Они просты и не нуждаются в больших затратах. Единственное, что потребуется от вас - немного времени и желания.

Талая вода

Приготовление в домашних условиях талой воды - пожалуй, самый простой путь улучшить ее свойства. Такая вода очень полезна. Объясняется этот тем, что по своей структуре она схожа с водой, входящей в состав крови и клеток. Поэтому ее применение освобождает организм от дополнительных энергетических затрат на структурирование воды.

Талая вода не только очищает организм от шлаков и токсинов, но и повышает его защитные силы, стимулирует обменные процессы и даже помогает в лечение некоторых болезней (в частности, есть сведения о том, что она эффективна при лечении атеросклероза). От умывания такой водой кожа становится мягче, волосы легче моются и проще расчесываются. Многие люди совершенно серьезно называют такую воду «живой».

Для получения талой воды следует использовать чистую воду. Замораживать воду можно в морозильнике или на балконе. Знатоки советуют использовать для этих целей чистые, плоские емкости - например, эмалированные кастрюли. Заполнять их водой следует не полностью, а примерно на 4/5, после чего накрыть крышкой. Помните о том, что, замерзая, вода увеличивается в объеме и начинает давить изнутри на стенки посуды. Поэтому от стеклянных банок лучше отказаться - они могут расколоться. Допускается использование пластиковых бутылок - при условии, что это бутылки для воды, а не для бытовых жидкостей.

Размораживать лед надо при комнатной температуре, ни в коем случае не ускоряя процесс нагреванием на плите. Лучше всего употреблять полученную талую воду в течение суток.

Как приготовить талую воду?

Существует множество способов приготовления талой воды в домашних условиях. Вот, пожалуй, самые известные.

Способ А. Маловичко

Эмалированную кастрюлю с водой поставьте в морозильную камеру холодильника. Через 4–5 часов достаньте ее. К этому времени в кастрюле уже должен образоваться первый лед, однако большая часть воды еще остается жидкой. Слейте воду в другую емкость - она вам еще потребуется. А вот кусочки льда следует выкинуть. Связано это с тем, что первый лед содержит в себе молекулы тяжелой воды, которая содержит дейтерий замерзает раньше, чем обычная вода (при температуре близкой к 4 °C). А кастрюлю с незамерзшей водой снова поставьте в морозильник. Но на этом приготовление не закончится. Когда вода замерзнет на две трети, незамерзшую воду снова следует слить, поскольку она может содержать вредные примеси. А тот лед, который остался в кастрюле - это и есть та самая вода, которая необходима организму человека.

Она очищена от примесей и тяжелой воды и вместе с тем содержит необходимый кальций. Последний этап приготовления - оттаивание. Лед нужно растопить при комнатной температуре и пить полученную воду. Хранить ее рекомендуют сутки.

Метод Зелипухиных

Этот рецепт подразумевает приготовление талой воды из воды водопроводной, которую следует предварительно нагреть до 94–96 °C (так называемого белого ключа), но не кипятить. После этого посуду с водой рекомендуют снять с плиты и быстро охладить, чтобы она не успела снова насытиться газами. Для этого можно кастрюлю поместить в ванну с ледяной водой.

Затем воду замораживают и размораживают в соответствии с главными принципами получения талой воды, о которых мы писали выше. Авторы методики считают, что талая вода, практически не содержащая газов, особенно полезна для здоровья.

Способ Ю. Андреева

Автор этого метода предложил, по сути, объединить преимущества двух предыдущих методов: приготовить талую воду, довести ее до «белого ключа» (то есть избавить таким образом жидкость от газов), а затем снова заморозить и разморозить.

Талую воду специалисты советуют употреблять ежедневно за 30–50 минут до еды 4–5 раз в день. Обычно улучшение самочувствие начинает наблюдаться спустя месяц после ее регулярного приема. В общей сложности в целях очистки организма рекомендуется выпивать в течение месяца от 500 до 700 мл (в зависимости от массы тела).

Серебряная вода

Еще один известный и простой способ сделать воду полезнее - улучшить ее характеристики с помощью серебра, бактерицидные свойства которого известны с древнейших времен. Многие века назад индийцы обеззараживали воду, опуская в нее серебряные украшения. В жаркой Персии знатные люди хранили воду только в серебряных кувшинах, поскольку это защищало их от инфекций. У некоторых народов существовала традиция бросать в новый колодец серебряную монету, тем самым улучшая ее качество.

Однако долгие годы не существовало никаких подтверждений того, что серебро действительно обладает не «чудесными» свойствами, а объяснимыми с точки
зрения науки. И только около ста лет назад ученым удалось установить первые закономерности.

Французский врач Б. Креде заявил о том, что добился успешного лечения сепсиса серебром. Позднее он выяснил, что этот элемент в течение нескольких дней способен погубить дифтерийную палочку, стафилококков и возбудителя тифа.

Объяснение этому феномену вскоре дал швейцарский ученый К. Негель. Он установил, что причиной гибели клеток микроорганизмов является воздействие на них ионов серебра. Ионы серебра выступают в роли защитников, уничтожая болезнетворные бактерии, вирусы, грибки. Их действие распространяется более чем на 650 видов бактерий (для сравнения - спектр действия любого антибиотика 5–10 видов бактерий). Интересно, что полезные бактерии при этом не погибают, а значит, не развивается дисбактериоз, столь частый спутник лечения антибиотиками.

При этом серебро не просто металл, способный убивать бактерии, но и микроэлемент, являющийся необходимой составной частью тканей любого живого организма. В суточном рационе человека должно содержаться в среднем 80 мкг серебра. При употреблении ионных растворов серебра не только уничтожаются болезнетворные бактерии и вирусы, но и активизируются обменные процессы в организме человека, повышается иммунитет.

Как приготовить серебряную воду?

Серебряную воду можно приготовить различными способами, в зависимости от имеющегося в вашем распоряжении времени и возможностей. Самый простой способ - просто опустить изделие из чистого серебра (ложку, монету или даже украшение) в сосуд с чистой питьевой водой на пару часов. Этого времени достаточно для того, чтобы качество воды заметно улучшилось. Такая вода не просто подверглась дополнительной очистке, но и приобрела целебные
свойства.

Другой популярный способ получения серебряной воды связан с кипячением серебряного изделия. Предварительно вещь из серебра надо тщательно почистить (например, зубным порошком) и прополоскать под проточной водой. После этого положить его в кастрюлю с холодной водой или в чайник и поставить на огонь. Не следует снимать посуду с плиты после того, как появятся первые пузырьки - необходимо дождаться, пока уровень жидкости не
уменьшится примерно на треть. Затем воду следует остудить при комнатной температуре - и пить в течение дня небольшими порциями.

Есть и более сложные способы обогащения воды ионами серебра. Например, существует метод, основанный на том, что действие ионов серебра возрастает при взаимодействии с ионами меди. Так появился специальный прибор: медно-серебряный ионатор, который при желании можно найти в аптеке. Некоторые умельцы конструируют его сами в домашних условиях, используя в качестве рабочей емкости обыкновенный стакан, в который опускают два электрода - медный и серебряный. Прибор, сконструированный в домашних условиях, состоит только лишь из стакана, медного и серебряного электрода.

Медики считают, что медно-серебряная вода полезнее серебряной, но употреблять ее можно с большими ограничениями - не более 150 мл в день. А вот обычную серебряную воду разрешается пить сколько душе угодно. Она абсолютно безопасна и не может привести к передозировке.

Кремниевая вода

Кремниевая вода (настоянная на кремнии) стала популярной в последнее время, несмотря на то что этот минерал известен людям испокон веков. И в определенном смысле именно кремний сыграл особую роль на ключевом этапе развития цивилизации - из него древние люди каменного века изготавливали первые наконечники для копий и топоры, с его помощью научились добывать огонь. Однако о целебных свойствах кремния заговорили менее полувека назад.

Стали замечать, что при взаимодействии с водой кремний изменяет ее свойства. Так, вода из колодцев, стенки которых выложены кремнием, отличалась от воды из других колодцев не только большей прозрачностью, но и приятным вкусом. В прессе стала появляться информация о том, что активированная кремнем вода убивает вредные микроорганизмы и бактерии, подавляет процессы гниения и брожения, а также способствует осаждению соединений тяжелых металлов, нейтрализует хлор, сорбирует радионуклиды. Люди стали активно использовать кремний для того, чтобы улучшить свойства воды - сделать ее
целебной.

Кстати, иногда происходит путаница: люди не видят разницы между минералом кремнием и одноименным химическим элементом. Для изменения свойств воды
используется кремний - минерал, который образован химическим элементом кремнием и входит в состав кремнезема. В природе он встречается в виде кварца, халцедона, опала, сердолика, яшмы, горного хрусталя, агата, опала, аметиста и многих других камней, основа которых - диоксид кремния.

В нашем организме кремний можно обнаружить в щитовидке, надпочечниках, гипофизе, много его в волосах и ногтях. Кремний участвует в обеспечении защитных функций организма, обменных процессов и помогает избавляться от токсинов. А еще кремний входит в состав белка соединительной ткани коллагена, поэтому от него во многом зависит скорость срастания костей после переломов.

Его дефицит может стать причиной сердечно-сосудистых и обменных заболеваний.

Не удивительно, что узнав об удивительных свойствах кремния, люди стали настаивать на нем воду - ведь именно посредством водной среды осуществляются все обменные процессы в организме. Такая вода долгое время не портится и приобретает ряд целебных качеств. Люди, употребляющие ее, замечают, что процессы старения в организме как будто замедляются. Однако механизм взаимодействия кремня с водой остается для ученых загадкой.

Предположительно это может быть связано со способностью кремния образовывать с водой ассоциаты (особые объединения молекул и ионов), поглощающие
грязь и болезнетворную микрофлору.

Как приготовить кремниевую воду

Приготовить кремниевую воду можно в домашних условиях. Причем, сделать это очень просто. В трехлитровую стеклянную банку с чистой питьевой водой
помещают горсть мелких кремниевых камушков. Важно обратить внимание на цвет, поскольку в природе этот минерал может приобретать различные оттенки.
Специалисты рекомендуют использовать для настаивания не черные камни, а ярко-коричневые. Банку можно не закрывать плотно, а лишь прикрыть марлей и поставить на трое суток в темное место. После того как вода настоится, ее следует процедить через марлю, а камни промыть проточной водой. Если вы заметите, что на поверхности камней образовался липкий налет, их следует поместить на два часа в слабый раствор уксусной кислоты или в насыщенный солевой раствор, а затем тщательно промыть под проточной водой.

Если нет противопоказаний, такую воду советуют употреблять в качестве обычной питьевой воды. Пить ее лучше небольшими порциями и маленькими глотками через равные интервалы - так она будет наиболее эффективна.

Одна из самых распространенных ошибок при приготовлении кремниевой воды - кипячение минерала. Специалисты не советуют класть кремний в кастрюли и чайники, в которых вы кипятите воду для приготовления чая и первых блюд, поскольку в этом случае есть риск перенасытить воду биологически активными веществами. Что же касается противопоказаний, их немного. Главным образом от употребления кремниевой воды советуют воздержаться людям со склонностью к онкологическим заболеваниям.

Шунгитовая вода

Шунгитовая вода, возможно, не так популярна, как серебряная или кремниевая, но в последнее время она находит все больше и больше приверженцев. А вместе с ростом ее популярности усиливается и голос медиков, призывающих помнить об осторожности при употреблении этой воды. Так кто же прав?

Для начала напомним, что шунгит - название древнейшей горной породы, каменный уголь, подвергшийся особой метаморфозе. Это - переходная стадия от
антрацита к графиту. Название свое он получил по имени карельского поселка Шуньга.

Повышенное внимание к шунгиту объясняется тем, что была обнаружена его способность удалять из воды механические примеси, соединения тяжелых металлов. Это сразу же послужило поводом говорить о том, что настоянная на шунгите вода обладает целебными свойствами, омолаживает организм, подавляет рост бактерий.

Сегодня шунгитовую воду широко применяют в качестве питьевой воды, а также в косметических и лечебных целях. Шунгит добавляют в ванны, так как считается, что он ускоряет обменные процессы и помогает избавляться от хронических заболеваний. С ним делают компрессы, ингаляции, примочки.

Сторонники лечения шунгитом утверждают, что он помогает избавиться от гастрита, анемии, диспепсии, отита, аллергических реакций, бронхиальной астмы, диабета, холецистита и многих других недугов, - достаточно регулярно употреблять по 3 стакана шунгитовой воды в день.

Как приготовить шунгитовую воду

Шунгитовую воду готовят дома, следуя достаточно простой технологии. В стеклянную или эмалированную емкость наливают 3 литра питьевой воды и опускают в нее 300 г промытых камней шунгита. Емкость надо поставить в защищенное от солнечных лучей место на 2–3 дня. После этого ее аккуратно, не взбалтывая, переливают в другой сосуд, оставляя примерно треть воды (ее пить нельзя, так как в нижней части оседают вредные примеси).

Камни шунгита после приготовления настоя промывают проточной водой - и они готовы к следующему применению. Некоторые источники указывают на то, что спустя несколько месяцев камни теряют свою эффективность и их лучше заменить. Другие эксперты советуют не менять камни, а просто обрабатывать их
периодически наждаком, чтобы активизировать поверхностный слой. При этом свойства воды не теряются даже после ее кипячения.

В последнее время шунгит стал применяться в производстве фильтров для очистки воды. Меньше, чем за два десятилетия в России и странах СНГ было продано более миллиона таких фильтров. Эффективность этой породы для очистки воды сегодня доказана. Почему же медики бьют тревогу?

Оказывается, что при настаивании шунгит способен вызывать химические реакции, в результате которых вода превращается в слабоконцентрированный раствор кислоты. И при длительном употреблении такой напиток может нанести вред желудку и пищеварительной системе в целом.

Кроме того, использование шунгитовой воды не рекомендуется людям, страдающим онкологическими и сердечно-сосудистыми заболеваниями. Ее не советуют пить при обострении хронических воспалительных заболеваний и при склонности к тромбозам.