Электронный балл. Балластники для люминесцентных ламп: подключения и принципы работы. Включение ламп дневного света

Балласт для газоразрядной лампы (люминесцентные источники света) применяется с целью обеспечения нормальных условий работы. Другое название – пускорегулирующий аппарат (ПРА). Существует два варианта: электромагнитный и электронный. Первый из них отличается рядом недостатков, например, шум, эффект мерцания люминесцентной лампы.

Второй вид балласта исключает многие минусы в работе источника света данной группы, поэтому и более популярен. Но поломки в таких приборах тоже случаются. Прежде чем выбрасывать, рекомендуется проверить элементы схемы балласта на наличие неисправностей. Вполне реально самостоятельно выполнить ремонт ЭПРА.

Разновидности и принцип функционирования

Главная функция ЭПРА заключается в преобразовании переменного тока в постоянный. По-другому электронный балласт для газоразрядных ламп называется еще и высокочастотным инвертором. Один из плюсов таких приборов – компактность и, соответственно, небольшой вес, что дополнительно упрощает работу люминесцентных источников света. А еще ЭПРА не создает шум при работе.

Балласт электронного типа после подключения к источнику питания обеспечивает выпрямление тока и подогрев электродов. Чтобы люминесцентная лампа зажглась, подается напряжение определенной величины. Настройка тока происходит в автоматическом режиме, что реализуется посредством специального регулятора.

Такая возможность исключает вероятность появления мерцания. Последний этап – происходит высоковольтный импульс. Поджиг люминесцентной лампы осуществляется за 1,7 с. Если при запуске источника света имеет место сбой, тело накала моментально выходит из строя (перегорает). Тогда можно попытаться сделать ремонт своими руками, для чего требуется вскрыть корпус. Схема электронного балласта выглядит так:

Основные элементы ЭПРА люминесцентной лампы: фильтры; непосредственно сам выпрямитель; преобразователь; дроссель. Схема обеспечивает еще и защиту от скачков напряжения питающего источника, что исключает необходимость ремонта по данной причине. А, кроме того, балласт для газоразрядных ламп реализует функцию коррекции коэффициента мощности.

По целевому назначению встречаются следующие виды ЭПРА:

  • для линейных ламп;
  • балласт, встроенный в конструкцию компактных люминесцентных источников света.

ЭПРА для люминесцентных ламп подразделяются на группы, отличные по функциональности: аналоговые; цифровые; стандартные.

Схема подключения, запуск

Пускорегулирующий аппарат подключается с одной стороны к источнику питания, с другой – к осветительному элементу. Нужно предусмотреть возможность установки и крепления ЭПРА. Подключение производится в соответствии с полярностью проводов. Если планируется установить две лампы через ПРА, используется вариант параллельного соединения.

Схема будет выглядеть следующим образом:

Группа газоразрядных люминесцентных ламп не может нормально работать без пускорегулирующего аппарата. Его электронный вариант конструкции обеспечивает мягкий, но одновременно с тем и практически мгновенный запуск источника света, что дополнительно продлевает срок его службы.

Поджиг и поддержание функционирования лампы осуществляется в три этапа: прогрев электродов, появление излучения в результате высоковольтного импульса, поддержание горения осуществляется посредством постоянной подачи напряжения небольшой величины.

Определение поломки и ремонтные работы

Если наблюдаются проблемы в работе газоразрядных ламп (мерцание, отсутствие свечения), можно самостоятельно сделать ремонт. Но сначала необходимо понять, в чем заключается проблема: в балласте или осветительном элементе. Чтобы проверить работоспособность ЭПРА, из светильников удаляется линейная лампочка, электроды замыкаются, и подсоединяется обычная лампа накаливания. Если она загорелась, проблема не в пускорегулирующем аппарате.

В противном же случае нужно искать причину поломки внутри балласта. Чтобы определить неисправность люминесцентных светильников, необходимо «прозвонить» все элементы по очереди. Начинать следует с предохранителя. Если один из узлов схемы вышел из строя, необходимо заменить его аналогом. Параметры можно увидеть на сгоревшем элементе. Ремонт балласта для газоразрядных ламп предполагает необходимость использования навыков владения паяльником.

Если с предохранителем все в порядке, далее следует проверить на исправность конденсатор и диоды, которые установлены в непосредственной близости к нему. Напряжение конденсатора не должно быть ниже определенного порога (для разных элементов эта величина разнится). Если все элементы ПРА в рабочем состоянии, без видимых повреждений и прозвон также ничего не дал, осталось проверить обмотку дросселя.

В некоторых случаях проще купить новую лампу. Это целесообразно сделать в случае, когда стоимость отдельных элементов выше ожидаемого предела или при отсутствии достаточных навыков в процессе пайки.

Ремонт компактных люминесцентных ламп выполняется по сходному принципу: сначала разбирается корпус; проверяются нити накала, определяется причина поломки на плате ПРА. Часто встречаются ситуации, когда балласт полностью исправен, а нити накаливания перегорели. Починку лампы в этом случае произвести сложно. Если в доме имеется еще один сломанный источник света сходной модели, но с неповрежденным телом накала, можно совместить два изделия в одно.

Таким образом, ЭПРА представляет группу усовершенствованных аппаратов, обеспечивающих эффективную работу люминесцентных ламп. Если было замечено мерцание источника света или он и вовсе не включается, проверка балласта и его последующий ремонт позволят продлить срок службы лампочки.

Несмотря на развитие технологий, обычные трубчатые лампы дневного света (ЛДС) до сих пор пользуются популярностью. Но если конструкция самих приборов так и остается практически неизменной, схемы подключения люминесцентных ламп постоянно меняются и дорабатываются. Взамен старым добрым дросселям приходят электронные балласты, а благодаря народной смекалке некоторые конструкции великолепно работают даже со сгоревшими спиралями запуска.

Как устроена и работает ЛДС

Конструктивно прибор представляет собой герметичную колбу, заполненную инертным газом и парами ртути. Внутренняя поверхность колбы покрыта люминофором, а в торцы ее впаяны электроды. При подаче напряжения на электроды, между ними возникает тлеющий разряд, создающий невидимое ультрафиолетовое излучение. Это излучение воздействует на люминофор, заставляя его светиться.

Как правило, форма колбы – трубчатая, но для улучшения эргономичности устройства трубку изгибают, придавая ей самую различную конфигурацию.

Все это ЛДС, работающие на одном принципе.

Для нормальной работы люминесцентного светильника необходимо выполнить два условия:

  1. Обеспечить начальный пробой межэлектродного промежутка (запуск).
  2. Стабилизировать ток через лампочку, чтобы тлеющий разряд не перешел в дуговой (работа).

Пуск лампы

В обычных условиях питающего напряжения недостаточно для электрического пробоя межэлектродного промежутка, поэтому пуск ЛДС возможет только с помощью дополнительных мер – разогрева электродов для начала термоэлектронной эмиссии или повышения напряжения питания до значений, достаточных для создания разряда.

До недавнего времени преимущественно использовался первый метод, для чего электроды делались (и делаются) в виде спиралей, наподобие тех, что стоят в обычных лампочках накаливания. В момент включения на спирали при помощи автоматических устройств (стартеров) подается напряжение, электроды разогреваются, обеспечивая зажигание светильника. После пуска системы стартер отключается и в процессе дальнейшей работы не участвует.

Стартеры для пуска ЛДС на различные напряжения

Позже начали появляться схемотехнические решения, не разогревающие электроды, а подающие на них повышенное напряжение. После пробоя межэлектродного промежутка напряжение автоматически снижается до номинального, и светильник переходит в рабочий режим. Для того чтобы ЛДС можно было использовать с любыми типами пусковых устройств, все они и по сей день выполняются с электродами в виде спиралей накаливания, имеющих по два вывода.

Поддержание рабочего режима

Если ЛДС напрямую включить в розетку, то начавшийся после поджига тлеющий разряд тут же перейдет в дуговой, поскольку ионизированный межэлектродный промежуток имеет очень малое сопротивление. Чтобы избежать этой ситуации, ток через прибор ограничивается специальными устройствами – балластами. Разделяются балласты на два типа:

  1. Электромагнитные (дроссельные).
  2. Электронные.

Работа электромагнитных пускорегулирующих аппаратов (ЭмПРА) основана на принципе электромагнитной индукции, а сами они представляют собой дроссели – катушки, намотанные на незамкнутом железном сердечнике. Такая конструкция обладает индуктивным сопротивлением переменному току, которое тем больше, чем выше индуктивность катушки. Дроссели различаются по мощности и рабочему напряжению, которые должны равняться мощности и напряжению используемой лампы.

Электромагнитные дроссели (балласты) для ЛДС мощностью 58 (вверху) и 18 Вт.

Электронные пускорегулирующие аппараты (ЭПРА) выполняют ту же функцию, что и электромагнитные, но ограничивают ток при помощи электронной схемы:

Электронное пускорегулирующее устройство для люминесцентной лампы

Преимущества балластов разных типов

Прежде чем выбрать и, тем более, купить балласт того или иного типа, имеет смысл разобраться в их отличиях друг от друга. К преимуществам ЭмПРА можно отнести:

  • умеренную стоимость;
  • высокую надежность;
  • возможность подключения двух ламп половинной мощности.

Электронные балласты появились много позже своих дроссельных собратьев, а значит, и список преимуществ у них больше:

  • небольшие габариты и вес;
  • при той же светоотдаче энергопотребление на 20% ниже, чем у ЭмПРА;
  • почти не нагреваются;
  • работают абсолютно бесшумно (ЭмПРА нередко гудит);
  • отсутствие мерцания лампы с частотой сети;
  • срок службы лампы на 50% выше, чем с дросселем;
  • лампа запускается мгновенно, без «мигания».

Но за все эти преимущества, естественно, придется заплатить – стоимость электронного устройства ощутимо выше, чем цена дроссельного, а надежность, увы, пока еще ниже. Кроме того, если мощность электронного балласта ниже мощности лампы, то в отличие от электромагнитного он просто сгорит.

Включение ламп дневного света

Хотя люминесцентную лампу нельзя просто воткнуть в розетку, запустить ее совсем несложно и под силу каждому, кто знаком с электрикой. Для этого достаточно обзавестись соответствующим пускорегулирующим устройством того или иного типа и собрать несложную схему.

Использование электромагнитного дросселя и стартера

Это, пожалуй, самый простой и бюджетный вариант. Для создания люминесцентного светильника понадобится лампа дневного света, электромагнитный балласт (дроссель), мощность которого соответствует мощности лампы, и стартер с рабочим напряжением 220 В (указано на корпусе). Схема подключения дросселя для люминесцентных ламп будет выглядеть так:

Работает схема следующим образом. При подключении светильника к сети лампа не горит – напряжения на ее электродах недостаточно для зажигания. Но одновременно это же напряжение поступает через спирали лампы на стартер, представляющий собой газоразрядную лампу со встроенной биметаллической пластиной.

Возникающий на электродах стартера тлеющий разряд разогревает биметаллическую пластину, но этого тока пока недостаточно для разогрева спиралей ЛДС.

Нагревшаяся пластина замыкает стартер накоротко, и возросший ток разогревает спирали лампы дневного света. Через некоторое время биметаллическая пластина остывает и разрывает цепь подогрева. За счет обратной самоиндукции дросселя на уже разогретых катодах ЛДС происходит бросок напряжения, поджигающий лампу. Благодаря возникшему тлеющему разряду напряжения на стартере уже не хватает для его срабатывания, и в дальнейшей работе он не участвует. Дроссель же ограничивает ток через колбу ЛДС, обеспечивая ей номинальный рабочий ток.

При необходимости один дроссель может питать и две лампочки, но здесь необходимо выполнить три условия:

  1. Мощность лампочек должна быть одинаковой.
  2. Мощность дросселя должна равняться суммарной мощности лампочек.
  3. Напряжение срабатывания стартеров (оно указано на корпусе устройства) должно быть 127 В.

Обратите внимание: соединение ламп должно быть последовательным и ни в коем случае не параллельным.

Работа люминесцентного светильника с ЭПРА

Если вы будете использовать в своем светильнике электронный балласт, то стартер не понадобится (он входит в ЭмПРА, хотя и выполнен отдельным узлом). Дело в том, что для пуска осветителя электронный балласт использует не подогрев спирали, а высокое напряжение (до киловольта), обеспечивающее разряд между электродами. Единственное условие, которое нужно соблюдать – мощность балласта должна равняться номинальной мощности осветителя. Схема же такого светильника будет совсем простая:

Включение электронного балласта для люминесцентных ламп (схема 36w)

Поскольку обычные ЭПРА не могут работать в двухламповых светильниках, выпускаются двухканальные приборы. По сути, это два обычных ЭПР в одном корпусе.

Схема светильника 2×36 с электронным балластом.

Приведенная схема не является единственной и зависит как от типа пускорегулирующего устройства, так и от производителя. Обычно она наносится прямо на корпус прибора:

Схема подключения и мощность осветителей(2х36) нередко наносится на корпус балласта.

Включение приборов со сгоревшими спиралями

Если в вашей кладовке покрываются пылью сгоревшие люминесцентные лампы, которые вы никак не соберетесь утилизировать, не торопитесь их выбрасывать. Такие устройства смогут послужить еще, если вы умеете держать в руках паяльник. Для реализации этой идеи понадобятся два абсолютно недефицитных диода и два конденсатора:

Как работает такая схема? Мост, собранный на диодах VD1, VD2, С1, С2 представляет собой простейший умножитель, увеличивающий напряжение вдвое. Для того чтобы при 400 – 450 В начался тлеющий разряд, совсем необязательно разогревать электроды. Как только светильник запустится, балласт L1 ограничит ток через лампу до рабочего уровня.

Если вы решили повторить эту схему, то обратите внимание на то, что конденсаторы должны быть бумажными неполярными, а диоды рассчитаны на обратное напряжение не ниже 300 В. В качестве балласта используется обычный дроссель, мощность которого равна мощности светильника. В случае если с дросселем совсем туго, но освещение нужно организовать любой ценой, можно в качестве балласта применить обычную лампочку накаливания, мощность которой равна мощности ЛДС. Но такая замена сильно снизит КПД всего устройства, а потому не всегда оправдана.

Следующий вариант светильника пригодится на тот случай, если в вашем распоряжении оказалось две однотипные ЛДС, у которых сгорело по одной спирали (обычно так и бывает). Для его реализации вам понадобятся дроссель, имеющий мощность вдвое большую, чем номинал каждой лампочки, и стандартный стартер на 220 В:

Включение двух ЛДС со сгоревшими спиралями

Здесь стартер подогревает по одной спирали в каждой лампе, которые включены последовательно. Этого вполне достаточно для пуска большинства газоразрядных приборов. Есть и еще одно применение такой схемы. Она удобна в том случае, если у вас нет двух дросселей на нужную мощность, зато есть один на удвоенную. Вполне очевидно, что в этой схеме будут работать и ЛДС с исправными спиралями.

Энергосберегающая лампочка – та же ЛДС

Практически каждый видел, а многие и пользовались так называемыми энергосберегающими лампочками, которые вворачиваются в обычный осветительный патрон. Сходство их с люминесцентными просто поражает – та же трубочка, только маленькая и скрученная.

Это тоже ЛДС, только компактнее и удобнее.

Сходство это не случайно, поскольку «энергосберегайка» - обычная ЛДС с электронным пускорегулирующим устройством. Убедиться в этом можно просто разобрав вышедшую из строя «сберегайку»:

Разобранная энергосберегающая лампочка

Даже на фото отлично видно, что колба имеет 4 вывода – по 2 на каждую спираль – и подключается хоть и к компактному, но самому обычному ЭПРА. В том, что пускорегулирующее устройство самое обычное, вы можете даже убедиться экспериментально. Возьмите обычную трубчатую ЛДС с той же мощностью, что указана на цоколе «энергосберегайки», и подключите ее вместо родной. Ни лампа, ни электронный балласт даже не заметят подмены.

Такая гибридная сборка может быть полезна, если энергосберегающая лампочка разбилась или в ней сгорели спирали. Зачем же выбрасывать вполне исправную электронику, когда трубчатая ЛДС стоит совсем недорого?

Трубчатая газоразрядная лампа, включенная через балласт «энергосберегайки». Если разобраться в разных схемах подключения, можно сделать все самостоятельно, сэкономив и время, и средства.

Модели между собой отличаются по номинальному напряжению, сопротивлению и перегрузке. Современные устройства способны работать в экономном режиме. Подключение балластов осуществляется через контроллеры. Как правило, они применяются электродного типа. Также схема подключения модели предполагает применение переходника.

Стандартная схема устройства

Схемы электронных балластов включают в себя набор трансиверов. Контакты у моделей применяются коммутируемого типа. Обычное устройство состоит из до 25 пФ. Регуляторы в устройствах могут применяться операционного либо проводникового типа. Стабилизаторы в балластах устанавливаются через обкладку. Для поддержания рабочей частоты в устройстве имеется тетрод. Дроссель в данном случае крепится через выпрямитель.

Устройства низкого КПД

Балласт электронный (схема 2х36) низкого КПД подходит для ламп на 20 Вт. Стандартная схема включает в себя набор расширительных трансиверов. Пороговое напряжение у них составляет 200 В. Тиристор в устройствах данного типа используется на обкладке. С перегрузками борется компаратор. У многих моделей используется преобразователь, который работает при частоте 35 Гц. С целью повышения напряжения применяется тетрод. Дополнительно используются переходники для подключения балластов.

Устройства высокого КПД

Электронный балласт (схема подключения показана ниже) имеет один транзистор с выходом на обкладку. Пороговое напряжение элемента равняется 230 В. Для перегрузок используется компаратор, который работает на низких частотах. Данные устройства хорошо подходят для ламп мощностью до 25 Вт. Стабилизаторы довольно часто применяются с переменными транзисторами.

Во многих схемах используются преобразователи, и рабочая частота у них равняется 40 Гц. Однако она может повышаться при возрастании перегрузок. Также стоит отметить, что у балластов используются динисторы для выпрямления напряжения. Регуляторы часто устанавливаются за трансиверами. Операционные налоги выдают частоту не более 30 Гц.

Устройство на 15 Вт

Балласт электронный (схема 2х36) для ламп на 15 Вт собирается с интегральными трансиверами. Тиристоры в данном случае крепятся через дроссель. Также стоит отметить, что есть модификации на открытых переходниках. Они выделяются высокой проводимостью, но работают при низкой частоте. Конденсаторы используются только с компараторами. при работе доходит до 200 В. Изоляторы используются только в начале цепи. Стабилизаторы применятся с переменным регулятором. Проводимость элемента составляет не менее 5 мк.

Модель на 20 Вт

Электрическая схема электронного балласта для ламп на 20 Вт подразумевает применение расширительного трансивера. Транзисторы стандартно используются разной емкости. В начале цепи они устанавливаются на 3 пФ. У многих моделей показатель проводимости доходит до 70 мк. При этом коэффициент чувствительности сильно не снижается. Конденсаторы в цепи используются с открытым регулятором. Понижение рабочей частоты осуществляется через компаратор. При этом выпрямление тока происходит благодаря работе преобразователя.

Если рассматривать схемы на фазовых трансиверах, то там имеется четыре конденсатора. Емкость у них стартует от 40 пФ. Рабочая частота балласта поддерживается на уровне 50 Гц. Триоды для этого используются на операционных регуляторах. Для понижения коэффициента чувствительности можно встретить различные фильтры. Выпрямители довольно часто используются на подкладках и устанавливаются за дросселем. Проводимость балласта в первую очередь зависит от порогового напряжения. Также учитывается тип регулятора.

Схема балласта на 36 Вт

Балласт электронный (схема 2х36) для ламп на 36 Вт имеет расширительный трансивер. Подключение устройства происходит через переходник. Если говорить про показатели балластов, то номинальное напряжение равняется 200 Вт. Изоляторы для устройств подходят низкой проводимости.

Также схема электронного балласта 36W включает в себя конденсаторы емкостью от 4 пФ. Тиристоры довольно часто устанавливаются за фильтрами. Для управления рабочей частотой имеются регуляторы. У многих моделей используется два выпрямителя. Рабочая частота у балластов данного типа максимум равняется 55 Гц. При этом перегрузка может сильно возрастать.

Балласт Т8

Электронный балласт Т8 (схема показана ниже) имеет два транзистора с низкой проводимостью. У моделей используются только контактные тиристоры. Конденсаторы в начале цепи имеются большой емкости. Также стоит отметить, что балласты производятся на контакторных стабилизаторах. У многих моделей поддерживается Коэффициент тепловых потерь составляет около 65 %. Компаратор устанавливается с частотой 30 Гц и проводимостью 4 мк. Триод для него подбирается с обкладкой и изолятором. Включение устройства осуществляется через переходник.

Использование транзисторов MJE13003A

Балласт электронный (схема 2х36) с транзисторами MJE13003A включает в себя только один преобразователь, который находится за дросселем. У моделей используется контактор переменного типа. Рабочая частота у балластов составляет 40 Гц. При этом пороговое напряжение при перегрузках равняется 230 В. Триод в устройствах применяется полюсного типа. У многих моделей имеется три выпрямителя с проводимостью от 5 мк. Недостатком устройства с транзитами MJE13003A можно считать высокие тепловые потери.

Использование транзисторов N13003A

Балласты с данными транзисторами ценятся за хорошую проводимость. У них малый коэффициент тепловых потерь. Стандартная схема устройства включает проводной преобразователь. Дроссель в данном случае используется с обкладкой. У многих моделей низкая проводимость, но рабочая частота равняется 30 Гц. Компараторы для модификаций подбираются на волновом конденсаторе. Регуляторы подходят только операционного типа. Всего в устройстве имеется два реле, а контакторы устанавливаются за дросселем.

Использование транзисторов КТ8170А1

Балласт на транзисторе КТ8170А1 состоит из двух трансиверов. У моделей имеется три фильтра для импульсных помех. За включение трансивера отвечает выпрямитель, который работает при частоте 45 Гц. У моделей используются преобразователи только переменного типа. Они работают при пороговом напряжении 200 В. Данные устройства замечательно подходят для ламп на 15 Вт. Триоды в контроллерах используются выходного типа. Показатель перегрузки может меняться, и это в первую очередь связано с пропускной способностью реле. Также надо помнить о емкости конденсаторов. Если рассматривать проводные модели, то вышеуказанный параметр у элементов не должен превышать 70 пФ.

Использование транзисторов КТ872А

Принципиальная схема электронного балласта на транзисторах КТ872А предполагает использование только переменных преобразователей. Пропускная способность составляет около 5 мк, но рабочая частота может меняться. Трансивер для балласта подбирается с расширителем. У многих моделей используется несколько конденсаторов разной емкости. В начале цепи применяются элементы с обкладками. Также стоит отметить, что триод разрешается устанавливать перед дросселем. Проводимость в таком случае составит 6 мк, а рабочая частота не будет выше 20 Гц. При напряжении 200 В перегрузка у балласта составит около 2 А. Для решения проблем с пониженной чувствительностью используются стабилизаторы на расширителях.

Применение однополюсных динисторов

Электронный балласт (2х36 схема) с однополюсными динисторами способен работать при перегрузке свыше 4 А. Недостатком таких устройств является высокий коэффициент тепловых потерь. Схема модификации включает в себя два трансивера низкой проводимости. У моделей рабочая частота составляет около 40 Гц. Кондукторы крепятся за дросселем, а реле устанавливается только с фильтром. Также стоит отметить, что у балластов имеется проводниковый транзистор.

Конденсатор используется низкой и высокой емкости. В начале цепи применяются элементы на 4 пФ. Показатель сопротивления на этом участке составляет около 50 Ом. Также надо обратить внимание на то, что изоляторы используются только с фильтрами. Пороговое напряжение у балластов при включении равняется примерно 230 В. Таким образом, модели можно использовать для ламп разной мощности.

Схема с двухполюсным динистором

Двухполюсные динисторы в первую очередь обеспечивают высокую проводимость у элементов. Электронный балласт (2х36 схема) производится с компонентами на коммутаторах. При этом регуляторы используются операционного типа. Стандартная схема устройства включает в себя не только тиристор, но и набор конденсаторов. Трансивер при этом используется емкостного типа, и у него высокая проводимость. Рабочая частота элемента составляет 55 Гц.

Основной проблемой устройств является низкая чувствительность при больших перегрузках. Также стоит отметить, что триоды способны работать только при повышенной частоте. Таким образом, лампы часто мигают, а вызвано это перегревом конденсаторов. Чтобы решить эту проблему, на балласты устанавливаются фильтры. Однако они не всегда способны справиться с перегрузками. В данном случае стоит учитывать амплитуду скачков в сети.

Люминесцентные лампы в свое время произвели настоящую революцию в освещении, так как по своей светоотдаче они превосходят обычные лампы накаливания в несколько раз. Например, одна лампа дневного света (это еще одно название люминесцентных ламп) мощностью 20 Вт дает такой световой поток, который доступен только лампе 100 Ваттной лампе накаливания. Если лампу накаливания просто можно подключить в сеть, используя только патрон выключатель и провода, то люминесцентной лампе, как «капризной даме», надо создать особые «комфортные условия». Ее надо вначале подготовить к пуску, потом запустить, а после того, как она загорится постоянно следить за ее «самочувствием». Этим занимаются пускорегулирующие аппараты (ПРА). Самым современным и эффективным ПРА является электронный ПРА (ЭПРА), который принято называть электронный балласт.

Слово «балласт» в названии этого устройства может вызвать у некоторых читателей определенный диссонанс, так как одним из его значений является бесполезный груз, который приходится нести. Однако, балласт не всегда бывает бесполезным, а иногда и необходимым. Например, без балласта любое судно не имело бы нужную посадку и остойчивость, а дирижабли и аэростаты не могут регулировать высоту своего полета. Кстати, происхождение слова «балласт» лингвисты отдают голландцам – нации мореплавателей и судостроителей. Поэтому мы предлагаем понятие электронного балласта воспринимать сугубо в положительном ключе, как то, что действительно необходимо.

Условия, необходимые для запуска и горения люминесцентной лампы

Рассмотрим кратко устройство лампы и узнаем какие процессы в ней происходят.

Люминесцентные лампы могут быть различной формы, но самыми распространенными являются линейные, которые имеют вид вытянутого герметичного цилиндра, сделанного из тонкого стекла. Воздух изнутри откачивают, но закачивают инертные газы и пары ртути. Смесь газов в лампе находится под пониженным давлением (приблизительно 400 Па).

С одного и другого конца лампы есть по электроду (катоду) сложной конструкции. Каждый катод имеет два штырьковых разъема снаружи, а внутри между ними размещена вольфрамовая спираль с особым эмиссионным покрытием. Если к противоположным катодам приложить напряжение в 220 В, то в лампе ничего не произойдет, так как разреженный газ просто так не проводит электрический ток. Известно, что для протекания электрического тока необходимо два условия:

  • Наличие свободных заряженных частиц (электронов и ионов).
  • Наличие электрического поля.

Когда мы подаем на катоды переменное напряжение в 220 В, то с электрическим полем в колбе будет все в порядке, так как оно существует в любой среде, даже в вакууме. Но основная «трудность» — это наличие свободных заряженных частиц. Газ в колбе нейтрален и на изменения поля никак не реагирует. Для получения тлеющего газового разряда существуют два способа:

  • Первый способ заключается в том, что на катоды лампы сразу подают очень высокое напряжение, которое принудительно «вырывает» электроны с катодов и «пробивает» газ в лампе, что вызывает его ионизацию и появление разряда. Такой пуск называется «холодным», он позволяет стартовать лампам очень быстро. Мало того, такой способ может заставить светиться те лампы, которые уже не работают в стандартных светильниках из-за перегоревших спиралей катодов (одной и даже двух).
  • Второй способ предполагает плавный нагрев спиралей, что вызывает электронную эмиссию (появление свободных зарядов), а затем поднятие напряжения на катодах до того порога, пока в лампе не возникнет разряд. Свободные электроны при этом разгоняются и ионизируют газ внутри колбы лампы.

Второй способ зажигания ламп предпочтительнее, так как при это срок их службы возрастает в разы. Метод быстрого холодного пуска очень популярен у радиолюбителей, которые делают, по их словам, «девайсы, реанимирующие дохлые лампы». Это, конечно, очень интересное экспериментальное поле для любителей посидеть с паяльником, но с точки зрения экономической целесообразности, такое занятие обычному человеку может показаться очень странным при цене новой лампы максимум в 100 рублей и сроке службы 12 000 часов. Не лучше ли новой лампе обеспечить плавный пуск и долгую службу, вместо «воскрешения» тех, что требуют утилизации. Если холодный пуск применять к новым лампам, то их катоды от «шокового» воздействия повышенным напряжением очень быстро станут негодными для работы в нормальных светильниках.

После того, как в лампе возникнет тлеющий разряд, ее сопротивление будет резко падать, и если оставить этот вопрос бесконтрольным, ток возрастет настолько, что в лампе зажжётся самая настоящая высокотемпературная плазменная электрическая дуга, которая приведет к быстрому выходу лампы из строя, которое может быть и с неприятными последствиями. Поэтому ПРА должны после зажигания лампы еще и ограничивать протекающий ток, сохраняя его таким, чтобы происходил именно тлеющий разряд.

На нашем портале есть статья, где подробно описываются все процессы, происходящие в люминесцентной лампе как во время старта, так и во время горения. Также в статье рассказано, как правильно подключить лампы с использованием электромагнитного балласта (ЭмПРА). Читаем: « ».

Исходя из всего вышеизложенного, можно отметить какие функции должны выполнять ПРА:

  • Плавный разогрев нитей накаливания катодов лампы, инициирующий термоэлектронную эмиссию.
  • Инициирование появления тлеющего разряда путем увеличения напряжения на катодах.
  • После появления разряда отключение накала, ограничение тока лампы и поддержание процесса горения даже при нестабильном сетевом напряжении.

В принципе, электромагнитные ПРА выполняют те же функции, но они очень чувствительны к сетевому напряжению и окружающей температуре.

Устройство электронного балласта для люминесцентных ламп

Электронный пускорегулирующий аппарат (ЭПРА) – это сложное электронное устройство, работу которого по принципиальной схеме поймет не каждый. Поэтому мы вначале покажем структурную схему, объясним назначение всех элементов, а потом уже кратко рассмотрим принципиальную.

На входе ЭПРА должен присутствовать фильтр электромагнитных помех задача которого подавлять электромагнитные помехи, которые генерируются в электронном балласте. Если фильтра не будет, то помехи могут нарушить работу электронных устройств, находящихся рядом. Кроме этого, от ЭПРА в электросеть могут «просачиваться» высокочастотные помехи. Некоторые производители из страны с самым большим населением не впаивают на печатной плате элементы, относящиеся к фильтру, хотя места для них предусмотрены. Такое «жульничество» трудно заметить, так как ЭПРА работать будет. Только «вскрытие» и осмотр специалистом поможет выяснить – есть в электронном балласте фильтр или нет? Поэтому стоит выбирать ЭПРА только известных производителей.

После фильтра помех следует выпрямитель , собранный по обычной диодной мостовой схеме. Для питания лампы сетевая частота в 50 Гц нас не устраивает, так как она вызывает мерцание лампы и хорошо слышимый шум дросселей. Для того чтобы этих неприятных вещей не происходило, в ЭПРА генерируют напряжение высокой частоты 35-40 кГц. Но для того чтобы можно было его получить необходимо иметь «исходное сырье» в виде постоянного напряжения. С ним легче делать различные преобразования.

Схема коррекции коэффициента мощности нужна для того, чтобы уменьшить влияние реактивной мощности. ЭПРА имеет индуктивный характер нагрузки, следовательно, ток отстает от напряжения на некоторый угол φ. Коэффициент мощности - это не что иное, как cosφ. Если отставания по фазе нет, то нагрузка активная, ток и напряжения полностью синфазны и поэтому φ=0°. А значит cosφ=1. Мощность вычисляется по формуле P=I*U* cosφ (I – это ток в Амперах, а U – это напряжение в Вольтах). Чем больше будет отставание по фазе тока, тем меньше будет коэффициент мощности cosφ и тем меньше будет полезная активная мощность и больше реактивная, которая бесполезна. Для того чтобы скорректировать отставание тока в схеме коррекции применяются конденсаторы, емкость которых точно рассчитана. В результате cosφ способен в хороших ЭПРА достигать значения 0,95. Это достаточно много!

Одно из лучших объяснений реактивной мощности (Q — это именно она)

Фильтр постоянного тока предназначен для сглаживания пульсаций, которые неизменно присутствуют после выпрямления диодным мостом. В результате получается постоянное напряжение 260-270 В, которое не совсем идеальное, так как небольшие пульсации все равно присутствуют, но совершенно достаточное для дальнейшего преобразования. Фильтр постоянного тока – это чаще всего электролитический конденсатор большой емкости, который подключается параллельно. Графики напряжения в зависимости от времени показаны на рисунке.

Далее, постоянное напряжение поступает на самую сложную часть ЭПРА – инвертор . Именно в нем постоянное напряжение преобразуется в высокочастотное переменное. Большинство электронных балластов собраны по полумостовой схеме, обобщенный вид которой показан на следующем рисунке.

Между входными клеммами с выпрямителя и фильтра на инвертор подается постоянное напряжение примерно 300 В. На схеме обозначена нижняя клемма 300 В. Одними из главных элементов являются ключи К1 и К2, которые управляются с логического блока управления БУ. Когда замкнут один ключ, то другой разомкнут, они не могут находиться в одинаковом состоянии. Например, БУ подал команду на замыкание К1 и размыкание К2. Тогда ток потечет по следующему пути: верхняя клемма входа, Ключ К1, дроссель, нить накала одного катода лампы, конденсатор (параллельно лампе), блок защиты, конденсатор C2 и минусовая нижняя клемма. Затем замыкается ключ К2, а К1 размыкается и ток потечет по следующему пути (от плюса к минусу): верхняя клемма, конденсатор C1, блок защиты, спираль одного катода лампы, конденсатор (параллельный лампе), спираль другого катода лампы, дроссель, ключ К2 и нижняя клемма. Переключение ключей происходит с частотой примерно 40 кГц, то есть 40 000 раз в 1 секунду.

Электрический ток, протекая по таким траекториям, вызывает прогрев спиралей лампы и термоэлектронную эмиссию у катодов. Емкость конденсатора, подключенного параллельно лампе, подбирают такой, чтобы частота колебательного контура, образованного совместно с дросселем, совпадала с частотой переключения ключей. От этого возникает резонанс и на катодах лампы появляется повышенное напряжение – около 600 В, которого при такой частоте вполне достаточно, чтобы лампа зажглась. После того как это произошло, сопротивление лампы резко уменьшается и ток через конденсатор и спирали катодов уже не протекает. Лампа шунтирует конденсатор. Ключи продолжают работать, но на лампу уже подается более низкое напряжение, так как резонанса нет. Дроссель ограничивает ток в лампе, а блок защиты следит за всеми параметрами. Если в светильнике не будет лампы или она окажется неисправной, то блок защиты остановит генерацию переменного напряжения ключами К1 и К2, так как без нагрузки инверторы выходят из строя.

Обратная связь и управление яркостью есть не во всех ЭПРА, а только в самых лучших. Назначение обратной связи – следить за состоянием нагрузки и реагировать на это. Например, предпринята попытка запустить ЭПРА без лампы. Импульсные блоки питания от этого выходят из строя, но при наличии обратной связи просто на инвертор не будет дана команда о запуске. А также обратная связь позволяет менять частоту генерации инвертора. При запуске лампы она может быть 50 кГц, а после этого снижаться до 38-40 кГц.

Примерно по такому алгоритму работают все ЭПРА. В качестве ключей применяются высоковольтные биполярные транзисторы. В самых лучших инверторах применяют полевые транзисторы, которые еще называют MOSFET. Они имеют лучшие характеристики, но и цена на них существенно выше. Представим типичную принципиальную схему простого ЭПРА.

Подробно разбирать работу этой схемы не будем, понимая, что большинство читателей не поймет. Просто проведем аналогию с предыдущей схемой. Роль ключей К1и К2 выполняют транзисторы Т1 и Т2. Частоту переключения определяет симметричный динистор DB3, конденсатор C2 и резистор R1. Когда на вход устройства подается напряжение 220 В, то оно после выпрямления начинает заряжать конденсатор С2. Скорость заряда определяет резистор R1, чем больше его сопротивление, тем дольше будет заряжаться конденсатор. Как только напряжение на конденсаторе превысит порог открывания динистора (примерно 30 В), он открывается и подает импульс на базу транзистора T2. Он открывается и через него начинает протекать ток. Как только конденсатор C2 разрядится и напряжение на нем упадет ниже 30 В, динистор закроется, соответственно и транзистор T2, но откроется транзистор T1, так как его база подключена к трансформатору TU38Q2, который согласует синхронную работу ключей и нагрузки. Если открыт один транзистор, то будет закрыт другой. Как только транзистор закрывается, возникающее в обмотке другого транзистора ЭДС самоиндукции открывает его. Так происходит автогенерация переменного напряжения в инверторе.

В самых лучших современных моделях ЭПРА кроме MOSFET транзисторов также используются интегральные микросхемы (ИМС), которые специально предназначены для управления лампами. От их применения габариты устройства уменьшаются, а функциональные возможности сильно увеличиваются. Приведем пример схемы ЭПРА с ИМС.

Главной деталью этого ЭПРА является интегральная микросхема UBA2021, «отвечающая» абсолютно за все происходящие в лампе и электронном балласте процессы. Лампы, которые будут работать с таким ЭПРА с такой ИМС будут служить очень долго.

Видео: Электронный балласт

Преимущества и недостатки электронного балласта

В настоящее время объем выпуска ЭПРА уже превысил выпуск электромагнитных балластов. И дальнейшая тенденция четко обозначена – электронные устройства заменят электромагнитные. В продаже уже практически невозможно найти светильники с классическими дросселями и стартерами и при ремонте чаще отдают предпочтение именно ЭПРА. Разберемся в чем же их преимущества?

  • Запуск лампы с ЭПРА производится по правильному и щадящему алгоритму, но тем не менее очень быстро – не более 1 секунды.
  • Частота, генерируемая ЭПРА, составляет 38-50 кГц, поэтому у люминесцентных ламп нет мерцания, утомляющего зрение, а также отсутствует стробоскопический эффект, характерный для электромагнитных ПРА.
  • Срок службы ламп, работающих с ЭПРА, увеличивается вдвое.
  • При перегорании люминесцентной лампы качественный ЭПРА сразу перестает генерировать переменное напряжение, что влияет на экономию и безопасность.
  • Применение ЭПРА исключает холодный пуск люминесцентных ламп, а это предотвращает эрозию катодов.
  • Электронные балласты работают абсолютно бесшумно, поэтому в жилых помещениях, больницах и школьных классах следует применять только ЭПРА.
  • Подключить ЭПРА очень легко, так как на них всегда есть очень понятная схема, с которой разберутся даже те, кто ни разу в жизни ничего не делал по электрике.
  • ЭПРА при работе не так сильно нагреваются, как электромагнитные балласты. Благодаря этому экономится электроэнергия. Экономия составляет примерно 30%.
  • Коэффициент мощности (cosφ) хороших ЭПРА может достигать 0,98. Для такого рода нагрузки - это очень хороший показатель.
  • Качественные ЭПРА могут работать при сниженном или завышенном напряжении в сети (160-260 В).
  • Электронные балласты имеют более высокий КПД, чем электромагнитные. Он может достигать 95%.
  • Для работы ЭПРА не требуются стартеры и конденсаторы, все необходимое для запуска и работы ламп уже предусмотрено в схеме.
  • ЭПРА по сравнению с ЭмПРА имеют сравнимые габариты, но гораздо меньшую массу.

При таком внушительном перечне достоинств мы можем сказать только о двух недостатках. Это более высокая цена и бо́льшая, чем у ЭмПРА вероятность выхода из строя при скачках напряжения в сети. Правда, последний недостаток относится только к тем электронным балластам, которые низкие как по качеству, так и по цене.

Как выбрать качественный электронный балласт

Электронные ПРА привыкли воспринимать отдельными блоками – коробочками прямоугольной формы, на которых имеются клеммы или разъемы для подключения ламп и сетевого напряжения. но не стоит забывать, что электронные балласты есть в каждой компактной люминесцентной лампе (КЛЛ) или как их любят называть – энергосберегающей лампе. Всю схему ЭПРА конструкторы ламп умудряются разместить на круглой монтажной плате, которую каким-то образом «запихивают» в корпус между светящейся частью и цоколем. Конечно, в такой тесноте этим балластам приходится несладко. Очень сильно стоит проблема отвода тепла от платы ЭПРА, которую каждый производитель решает по-разному. Точнее, можно сказать, что пока одни решают, другие не решают вовсе.

Проконтролировать что находится в корпусе лампы, естественно, никто до покупки не даст, а сам вид платы и наличие на ней определенных элементов может многое рассказать специалисту. Некоторые производители, пользуясь скрытностью ЭПРА в КЛЛ, желают сэкономить на каких-то элементах, что отражается на работе лампы и сроке ее службы. Получается, что покупка КЛЛ по своей сути идентична покупке «кота в мешке»? К сожалению, это в большинстве случаев так. Известные мировые бренды, конечно, «грешат» этим меньше, но на них много подделок, поэтому стоит найти продавца, которому делают официальные поставки от производителя.

Существует способ, позволяющий судить о качестве ЭПРА в КЛЛ. Он не объективный, а субъективный, то, тем не менее им давно пользуются и уже он доказал свою состоятельность. В чем он заключается?

В хороших КЛЛ запуск лампы делают плавным, на катоды подают повышенное напряжение для зажигания тлеющего разряда только после прогрева. Эти процессы занимают какое-то время, поэтому при включении хорошей лампы всегда есть пауза между включением и ее зажиганием. Она небольшая, но ощутимая. Если же лампа зажигается холодной, то высокое напряжение, подают сразу и это вызывает мгновенный пробой и зажигание. Если пауза после включения не ощущается, то с большой долей вероятности можно сказать, что электронный балласт «упрощенный» и такую лампу лучше не приобретать. Некоторые производители «совершенствуют» схему ЭПРА, «выкидывая» с их точки зрения «лишние» детали.

При покупке электронного балласта в виде отдельного блока прежде всего надо узнать для каких именно ламп он предназначен. Все линейные люминесцентные лампы выпускаются с различными диаметрами трубок: T4 – 12,7 мм, T5 – 15,9 мм и T8 – 25,4 мм. Лампы T4 и T5 имеют цоколь G5 (расстояние между контактными штырьками 5 мм), а лампы T8 имеют цоколю G13 (расстояние 13 мм). от размеров люминесцентной лампы зависит ее мощность: чем она длиннее, тем мощность больше:

  • Лампе длиною в 450 мм соответствует мощность 15 Вт;
  • Лампе длиною в 600 мм, которые широко используются в подвесных потолках типа «Армстронг», соответствует мощность 18-20 Вт;
  • Лампе длиною 900 мм – 30 Вт
  • Лампе длиною в 1200 мм – 36 Вт;
  • И лампе длиною в 1500 мм соответствует мощность 58 Вт или 70 Вт.

О том соответствует ли электронный балласт какому-либо светильнику, предназначенному для определенного вида ламп узнать очень легко, так как вся необходимая информация уже есть в маркировке ЭПРА. Рассмотрим конкретный пример и узнаем, что означают те или иные цифры и символы. В общем виде маркировка образца ЭПРА выглядит так.

«Расшифруем» общую информацию об устройстве, которая находится в левой части ЭПРА.

Эта модель ЭПРА произведена компанией Vossloh-Schwabe Group, штаб-квартира которой находится в Германии. Однако Vossloh-Schwabe Group входит в состав японской группы Panasonic Electric Works. Продукция этого производителя выгодно отличается безупречным качеством и надежностью. А также из маркировки видно, что этот ЭПРА предназначен для работы с лампами T8, произведен в Сербии, где у Vossloh-Schwabe Group есть филиал. Рассмотрим еще то, что является важным в маркировке.

Вход сетевого напряжения 220 В 50 Гц обозначается на корпусе откуда можно понять где расположены клеммы. Полярность не указана, значит, к этому ЭПРА фазу и ноль можно подключать произвольно. Провод заземления должен подключаться к корпусу, для этого на нем должен быть специальный винт. Переходим ближе к центру ЭПРА и смотрим на обозначения.

Приятно, что на корпусе этого ЭПРА присутствует информация о проводе, которым можно делать коммутацию, его площади поперечного сечения и на какую длину снимать изоляцию, чтобы он хорошо расположился в клеммах.

Индекс энергоэффективности EEI является оценкой того насколько полно расходуется входная мощность именно на получение света от лампы. Вычисляется показатель КПД, который определяется отношением мощности лампы ко входной мощности Pл/Pвх, а затем по таблице 6.3, размещенной на странице 61 в документе, ссылка на который находится ниже, находится соответствие ЭПРА индексу энергоэффективности.

В Европе действует определенный свод правил и норм, которому должны отвечать все применяемые устройства и материалы. Как в России действуют СНиПы, ПУЭ, СанПин, так «за бугром» у соседей действуют правила, которые обозначаются буквами EN и цифровым кодом. Этот список недаром присутствует в маркировке, так как при сдаче какого-либо объекта в эксплуатацию требуется документальное подтверждение оправданности применения того или иного устройства.

Основные характеристики этого ЭПРА прямо на корпусе напечатаны в виде таблицы:

Вся информация, представленная в таблице максимально точная и лаконичная, не требующая никаких пояснений, кроме положения точки tc, где максимальная температура не должна превышать в этом ЭПРА 60°C. Эта точка обозначена на корпусе балласта (справа от верхней части таблицы), она находится как раз в месте расположения транзисторных ключей – самых нагреваемых деталей электронного балласта.

Если нет в распоряжении электронного балласта, но есть светильник с известным типом ламп, применяемым в нем, то можно подобрать ЭПРА по каталогам производителей, которые легко найти в интернете. Приведем выдержку из каталога электромагнитных дросселей компании Helvar из Финляндии, продукция которой качественная и надежная. Для примера возьмем электронные балласты для ламп T8 из серии EL-ngn. Эти ЭПРА характеризуются: энергоэффективностью, «теплым» запуском люминесцентных ламп, отсутствием мерцания, хорошей электромагнитной совместимостью, малыми помехами, минимальными потерями и стабильными режимами работы.

Электронные балласты для T8 люминесцентных ламп Helvar EL-ngn


Pл*К-во ламп Модель балласта EEI Размеры, Д*Ш*В, мм Масса, г Мощн. Цепи, Вт Ток цепи, A P на лампу, Вт Цена, руб
14*1 EL1x15ngn A2 190*30*21 120 15 0,09-0,07 13 415
15*1 EL1x15ngn A2 190*30*21 120 15.5 0,09-0,07 13.5 415
18*1 EL1x18ngn A2 280*30*28 190 19 0,09-0,08 16 594
18*2 EL2x18ngn A2 BAT 280*30*28 200 37 0,16-0,15 16 626
18*4 EL4x18ngn A2 BAT 280*30*28 200 72 0,33-0,30 16 680
30*1 EL2x30ngn A2 BAT 190*30*21 120 26.5 0,14-0,11 24 626
36*1 EL1*36ngn A2 280*30*28 191 36 0,16-0,15 32 594
36*2 EL2x36ngn A2 BAT 280*30*28 205 71 0,32-0,29 32 626
58*1 EL1x58ngn A2 280*30*28 193 55 0,26-0,23 50 594
58*2 EL2x58ngn A2 BAT 280*30*28 218 108 0,50-0,45 50 626

Кроме того, что показано в таблице, электронные балласты серии Helvar EL-ngn еще обладают общими для всех характеристиками. Перечислим их в следующей таблице.

Характеристика Показатель
Максимальная температура точки «tc», °С 75
Максимальная окружающая температура, °C -20…+50
Температура хранения, °C -40…+80
Максимально допустимая влажность Без конденсации
Минимальное число пусков лампы >50 000
Переменное напряжение, В 198-264
Постоянное напряжение (для старта >190 В) 176-280
Максимальное перенапряжение, В 320 В, 1 час
Коэффициент мощности (λ, cosφ) 0,98
Ток утечки на землю, мА
Максимальное выходное напряжение, В 350
Срок жизни (до 10% отказов) 50 000 час при tc
Максимальная длина проводов к лампе 1,5 v
Время прогрева ламп, сек

Кроме этих балластов, характеристики которых мы показали в таблице в ассортименте Helvar есть еще много моделей электронных балластов, которые предназначены для других типов ламп. Из линейных это T5 и T5-eco, а из компактных это: TC-L, TC-F, TC-DD, TC-SE, PL-R, TC-TE. Мы сделали краткий обзор классических электронных балластов для ламп T8, но у Helvar еще есть управляемые аналоговым сигналом 1-10 В ЭПРА, которые могут менять свою яркость и управляться всего одной кнопкой как на включение и отключение, так и на изменение яркости свечения люминесцентных ламп.

И также у этого производителя есть полностью цифровые балласты iDIM, которые могут иметь внешнее управление по шине (DALI) и ручное управление от всего одной кнопки (Switch-Control). Посмотреть весь ассортимент электронных балластов можно в каталоге Helvar, который откроемся по следующей ссылке. Каталог на английском языке, цены в нем не указаны.

Подобные альбомы со всей технической информацией об ЭПРА, есть у всех хороших производителей на их официальных сайтах. У читателей может возникнуть вопрос – какие ЭПРА можно считать хорошими? Мы бы рекомендовали прежде всего обращать внимание на следующие бренды: Helvar, Vossloh-Schwabe, Tridonic, Osram, Philips, Sylvania.

Порядок замены электромагнитного дросселя и стартера на электронный балласт

Все новые светильники с люминесцентными лампами по умолчанию оборудуются ЭПРА и в случае выхода их из строя замена очень проста: «выкидывается» один блок и на его место ставится другой. Если же стояла «классика» - электромагнитный балласт и стартеры, то их лучше поменять на электронный балласт. При этом светильник должен подвергнуться некоторой несложной модернизации. Рассмотрим этот процесс детально.

Из инструмента понадобятся набор отверток, нож, кусачки, стриппер для снятия изоляции (опционально) и мультиметр. А также может понадобиться монтажный провод ПВ-1 с площадью поперечного сечения от 0,5 до 1,5 мм², которого есть в этом диапазоне 4 вида: 0,5 мм², 0,75 мм², 1 мм² и 1,5 мм². Если в светильнике был применен алюминиевый провод, то его лучше сразу поменять на медный.

Бывает, что в светильниках применяют , но с медным напылением. При зачистке возникает иллюзия медного провода, а на срезе провод белый. От таких «гибридов» лучше сразу избавляться.

Изображение Описание процесса
Предстоит модернизация светильника на 4 лампы T8 по 18 Вт. В нем установлено 2 электромагнитных дросселя, 2 конденсатора и 4 стартера.
Вместо них будет устанавливаться ЭПРА OSRAM QTZ8 4X18/220-240 VS20, которому не нужны ни стартеры, ни конденсаторы.
Светильник отключается, затем проверяется отверткой-индикатором отсутствие фазы на входной клемме и на корпусе, отсоединяются входные провода, светильник демонтируется и помещается на стол для удобства работы с ним.
Со светильника демонтируется лицевая панель и снимаются все люминесцентные лампы.
Со своего посадочного места снимается входная винтовая клемма и из нее убираются все провода.
Демонтируются электромагнитные дроссели и конденсаторы.
Снимается гнездо стартера. Это делается очень просто, так как оно крепится к корпусу светильника на пластиковых защелках.
Провода, идущие к стартеру обрезаются возле него. Те же операции производятся со всеми стартерами.
Выбирается место размещения ЭПРА. Лучше, если оно будет с краю светильника, чтобы все провода, ведущие к балласту можно было провести возле бортов, так они будут меньше заметны. Затем согласно схемы подключения, изображенной на корпусе ЭПРА «назначается» положение каждой лампы. Те, что на схеме слева в светильнике будут по центру, а те, что справа – по краям.
Каждый патрон для люминесцентной лампы имеет клеммы с двумя парами пружинных контактов. Каждая пара соединена с одним их гнезд для штырьков лампы T8 с цоколем G13. Это очень удобно, так как для того, чтобы сделать ответвление не надо ничего паять или скручивать. Зачищенный на 9 мм провод просто вставляется в клемму до упора, где его зажимает пружинный контакт.
Проводится разводка проводов согласно принципиальной схемы, изображенной на ЭПРА. К тем концам проводов, которые будут подключаться к балласту приклеиваются бирки из кусочков малярного скотча и на них пишется номер клеммы. Это позволит избежать путаницы.
После того, как закончена разводка проводов, ЭПРА помещается близко к тому месту. Где он будет установлен и все пронумерованные провода подключаются к соответствующим клеммам. Для этого отверткой нажимается механизм контакта, а затем зачищенный на 9 мм провод вставляется в отверстие клеммы до упора. Механизм контакта отпускается и проверяется надежность соединения провода.
Входные клеммы L, N, PE (фаза, ноль рабочий, заземление) соединяются проводами со входной винтовой клеммой светильника.
После того, как все провода соединены с электронным балластом, он устанавливается на место и закрепляется винтами к корпусу, в котором есть специальные отверстия. В случае необходимости отверстие можно просверлить.
Проложенные провода в светильнике группируются и помещаются как можно ближе к краю. В корпусе светильника могут быть выштампованные усики. В случае необходимости для организации проводов можно воспользоваться пластиковыми стяжками.
После проверки всех соединений светильнику устраивают пробный запуск на столе и в случае его успеха монтируют на свое штатное место.

Читатели наверняка заметили, что установка электронного балласта – это несложное мероприятие, не требующее участия электрика высшей квалификации. Можно сказать, что с этим справится любой. Чтобы не ошибиться при подключении мы предлагаем от руки нарисовать схему, а потом после соединения каких-то контактов в светильнике отмечать это в своем рисунке. Проверено – помогает.

Все современные светильники оборудованы так, что их для монтажа не требуется паяльник, нет нужды делать скрутки. Все соединения должны быть только в клеммах. Если провода, оставшегося от старой схемы подключения, не хватает, то ни в коем случае не надо делать скрутку или пайку. Лучше поменять этот участок на цельный провод. 1 метр прекрасного монтажного провода ПВ-1 с жилой 1 мм² стоит 7 рублей. Соединение с клеммой занимает несколько секунд, а для пайки уже нужны десятки минут.

Видео: Замена двух электромагнитных балласта на один электронный

Ремонт неисправного электронного балласта

Электронный балласт – замечательное устройство, которое очень бережно относится к люминесцентной лампе, но, к сожалению, не может иногда сберечь само себя. Электромагнитный балласт в этом отношении гораздо надежнее, чтобы его «спалить» надо очень сильно «постараться». Диагностировать неисправность ЭПРА достаточно сложно для человека незнакомого с электроникой, но, тем не менее несколько советов мы дадим.

Если при включении светильника с электронным балластом ничего не происходит, то надо попробовать поменять лампу, может, дело в ней. Для этого надо иметь заведомо исправную лампу, которую надо вставить в патроны светильника и попробовать запустить. Если опять ничего не происходит, то свое внимание уже надо переключать на ЭПРА, так как кроме него и ламп в светильнике ничего то и нет. Если нет под рукой исправной лампы, то можно в режиме прозвонки проверить целостность спиралей. Если они целые и колба лампы целая, то, скорее всего, она исправна, если только возле катодов не будет наблюдаться сильное почернение слоя люминофора.

Электроника – это наука контактов. Так говорят специалисты. И прежде чем «лезть» в сложное устройство балласта, надо прозвонить все электрические соединения в светильнике, который, разумеется, должен быть отключен от сети. А также полезно прозвонить соединения при вставленной лампе. Чтобы убедиться, что штырьки ее цоколя входят в контакт с патроном. Если же и эти действия не выявили ничего «криминального», то пора посмотреть на «внутренний мир» электронного балласта.

ЭПРА необходимо достать из корпуса, предварительно отключив разъемы или вынув провода из клемм. Если провода не промаркированы, то перед тем, как их отсоединять, надо их промаркировать каким-либо способом. Самым простым является наклеивание полосок малярного скотча с номером клеммы на провод. После этого балласт можно демонтировать из корпуса светильника.

Внешний осмотр ЭПРА может тоже о много рассказать. Если было сильное термическое воздействие, то оно обязательно оставит следы. Можно отметить в каком именно месте был сильный нагрев, чтобы потом посмотреть какие элементы схемы могли его спровоцировать.

После вскрытия корпуса балласта надо внимательно осмотреть плату. Бывает, что даже осматривать ничего и не надо, так как бо́льшая часть элементов черные, с явными признаками перегрева. Ремонт такого ЭПРА будет экономически нецелесообразен, поэтому после выпаивания целых элементов (если они есть) плату можно выбросить.

Слабым местом любого электронного устройства являются электролитические конденсаторы, которые легко узнаются по «бочкообразному» виду. При несоблюдении их номиналов, при низком качестве, при превышении напряжения, при перегреве может произойти их вздутие и даже разрыв, который происходит из-за закипания электролита. Такие признаки явно говорят о неисправности, поэтому конденсатор выпаивается и проверяются все соседние элементы. Новый конденсатор стоит выбирать с бо́льшим рабочим напряжением, например, был на 250 В, а новый надо ставить уже на 400 В. Очень часто нечестные производители впаивают в плату ЭПРА элементы с более низким рабочим напряжением, что со временем и приводит к поломке.

После конденсаторов надо внимательно осмотреть все другие элементы, которые тоже могут своим внешним видом показать свою неисправность. Обычно очень явно «говорят» о себе сгоревшие резисторы – они темнеют, становятся черными как уголь, а иногда просто разрываются. Естественно, такие детали также надо менять, но при этом лучше выбирать по уровню рассеиваемой мощности на ступень или даже две больше, чем номинальное.

Резисторы можно прозванивать прямо в схеме, не выпаивая их, так как основная их неисправность – это перегорание, что равнозначно обрыву. Другие элементы – конденсаторы, диоды и транзисторы перед проверкой лучше выпаять из схемы, а потом воспользоваться специальным универсальным прибором для проверки.

Сгоревшие или «пробитые» диоды тоже очень часто можно легко увидеть по характерному потемнению, если они в пластиковом корпусе. Диоды в стеклянном корпусе часто разрывает на две части либо колба трескается. Прозвонить диоды очень легко. После выпаивания из печатной платы (можно только одну «ногу»), берется мультиметр и ставится на измерение сопротивления или на специальный режим, обозначенный диодом (если таковой есть). В прямом направлении диод должен хорошо проводить электрический ток. Для проверки этого красный щуп мультиметра соединяется с анодом, а черный с катодом (на диодах в пластиковом корпусе у катода есть полоска). Если мультиметр будет показывать какие-то значения сопротивления, то ток протекает. Поменяв щупы местами надо убедиться, что в обратном направлении диод не пропускает электрический ток, сопротивление его бесконечно. Если это так, то диод исправен. Во всех других случаях – неисправен.

Одной из самых «проблемных» деталей в ЭПРА являются транзисторы. Они работают в самых непростых условиях – им надо 40 тыс. в секунду включать и выключать большие токи, отчего транзисторы сильно нагреваются. При их перегреве свойства полупроводников меняются и может произойти «пробой», что сделает транзистор бесполезным. В итоге по цепи начинают «гулять» бесконтрольно большие токи, которые попутно выжигают и другие близкорасположенные элементы, имеющие наименьшее сопротивление. То есть транзистор не сгорает никогда в «гордом одиночестве», он «тянет» за собой и другой транзистор, и другие элементы. Для того чтобы транзистор не перегревался, его устанавливают на радиатор, рассеивающий тепло. И в хороших ЭПРА так и делают.

Если радиаторов на транзисторах нет, то их можно установить самостоятельно, купив их в магазине радиотоваров и прикрутив винтом через отверстие в корпусе. При этом между транзистором и радиатором должна быть термопаста типа КПТ 8, что применяется для кулеров процессоров компьютеров.

Внешне транзистор может не подавать никаких признаков своей неисправности и на вид быть абсолютно «здоровым». Может, это и так, но транзисторы в электронных балластах надо проверять всегда. Они – одно из слабых мест. Хоть некоторые источники в интернете и утверждают, что транзистор можно проверить, не выпаивая его из платы, но на самом деле это не так. Рассмотрим еще один вариант схемы ЭПРА.

Видно, что транзисторы буквально «обвешаны» различными элементами, которые хорошо проводят Это означает, что прозвонка транзисторов прямо в схеме будет просто некорректной. Поэтому наш совет — транзисторы надо выпаять из платы полностью, так как в 80% случаев они будут все равно неисправны, если ЭПРА не рабочий. Проверить мультиметром транзистор проще простого, надо представить его в виде двух диодов, а потом проверить каждый из них.

Если обнаружится хоть один сгоревший транзистор, то все равно надо менять оба, в любом случае. После выхода из строя одного из транзисторов по схеме, в том числе и по второму транзистору начинают бесконтрольно протекать немаленькие токи, которые могут вызвать какие-то изменения в кристалле полупроводника. И они, скорее всего, проявятся в дальнейшем.

Дроссели и трансформаторы очень редко выходят из строя, но тем не менее проверить их стоит просто прозвонив обмотки мультиметром. Особого внимания к себе требует высоковольтный конденсатор, подключаемый параллельно катодам лампы. Бывает, что производители устанавливают конденсатор с рабочим напряжением не 1200 В, а с меньшим. Учитывая, что этот конденсатор участвует в запуске лампы, напряжение на нем может достигать 700-800 В, что может вызвать его пробой. Поэтому его проверять надо обязательно и в случае замены подбирать номиналом рабочего напряжения не меньше 1,2 кВ, а лучше 2 кВ.

При проверке и диагностировании неисправностей в электронном балласте все равно лучше проверить абсолютно все элементы. Единственным «крепким» орешком, который невозможно проверить мультиметром является динистор. Его проверяют только на специальном стенде. Его пробой обычно виден, так как колба у этого элемента стеклянная. Но бывает, что при отсутствии внешних признаков выхода из строя в «молчании» ЭПРА виноват именно он. Поэтому лучше иметь под рукой новый динистор, тем более что цена на них копеечная.
Диагностика и ремонт электронных балластов с интегральными микросхемами уже не может быть проведена Для этого требуется специальное лабораторное оборудование и услуги специалиста.

Видео: Ремонт электронного балласта светильника

Видео: Ремонт электронного балласта

Заключение

Массовое внедрение электронных балластов в схемы управления люминесцентных ламп позволила улучшить комфортность этого вида освещения, увеличить срок службы ламп, добиться солидной экономии электроэнергии. С ЭПРА люминесцентное освещение буквально получило «второе рождение» так как, кроме простого включения и отключения, «умная» электроника позволила еще и регулировать яркость в очень приличном диапазоне.

Возросший интерес к электронным балластам, к сожалению, повысил активность нелегальных и нечестных производителей, которые наводняют рынок продукцией низкого качества. Это сильно портит репутацию ЭПРА в целом, но умные люди как понимали раньше, так и понимают сейчас, что лучше приобрести один хороший электронный балласт на 10 лет, пускай даже заплатив за него в два раза дороже, чем каждый год или два менять более дешевый. Поэтому стоит доверять только тем производителям, которую свою хорошую репутацию зарабатывали многие десятки лет.

Люминесцентная лампа (ЛЛ) представляет собой стеклянную трубку, заполненную инертным газом (Ar, Ne, Kr) с добавлением небольшого количества ртути. На концах трубки имеются металлические электроды для подачи напряжения, электрическое поле которого приводит к пробою газа, возникновению тлеющего разряда и появлению электрического тока в цепи. Свечение газового разряда бледно-голубого оттенка, в видимом световом диапазоне очень слабое.

Но в результате электрического разряда большая часть энергии переходит в невидимый, ультрафиолетовый диапазон, кванты которого, попадая в фосфорсодержащие составы (люминофорные покрытия) вызывают свечение в видимой области спектра. Меняя химический состав люминофора, получают различные цвета свечения: для ламп дневного света (ЛДС) разработаны различные оттенки белого цвета, а для освещения в декоративных целях можно выбрать лампы иного цвета. Изобретение и массовый выпуск люминесцентных ламп – это шаг вперед по сравнению с малоэффективными лампами накаливания.

Для чего нужен балласт?

Ток в газовом разряде растет лавинообразно, что приводит к резкому падению сопротивления. Для того чтобы электроды люминесцентной лампы не вышли из строя от перегрева, последовательно включается дополнительная нагрузка, ограничивающая величину тока, так называемый балластник. Иногда для его обозначения употребляют термин дроссель.

Используются два вида балластников: электромагнитный и электронный. Электромагнитный балласт имеет классическую, трансформаторную комплектацию: медный провод, металлические пластины. В электронных балластниках (electronic ballast) применяются электронные компоненты: диоды, динисторы, транзисторы, микросхемы.

Лампы накаливания

Для первоначального поджига (пуска) разряда в лампе в электромагнитных устройствах дополнительно используется пусковое устройство – стартер. В электронном варианте балластника эта функция реализована в рамках единой электрической схемы. Устройство получается легким, компактным и объединяется единым термином – электронный пускорегулирующий аппарат (ЭПРА). Массовое применение ЭПРА для люминесцентных ламп обусловлено следующими достоинствами:

  • эти аппараты компактны, имеют небольшой вес;
  • лампы включаются быстро, но при этом плавно;
  • отсутствие мерцания и шума от вибрации, поскольку ЭПРА работает на высокой частоте (десятки кГц) в отличие от электромагнитных, работающих от сетевого напряжения с частотой 50 Гц;
  • снижением тепловых потерь;
  • электронный балласт для люминесцентных ламп имеет значение коэффициента мощности до 0,95;
  • наличие нескольких, проверенных видов защиты, которые повышают безопасность использования и продлевают срок службы.

Схемы электронных балластов для люминесцентных ламп

ЭПРА – это электронная плата, начиненная электронными компонентами. Принципиальная схема включения (Рис. 1) и один из вариантов схемы балласта (Рис. 2) приведены на рисунках.

Люминесцентная лампа, С1 и С2 – конденсаторы

Электрическая схема ЭПРА

Электронные балласты могут иметь разное схемотехническое решение в зависимости от примененных комплектующих. Выпрямление напряжения производится диодами VD4–VD7 и далее фильтруется конденсатором C1. После подачи напряжения начинается зарядка конденсатора С4. При уровне 30 В пробивается динистор CD1 и открывается транзистор T2, затем включается в работу автогенератор на транзисторах T1, T2 и трансформаторе TR1. Резонансная частота последовательного контура из конденсаторов С2, С3, дросселя L1 и генератора близки по величине (45–50 кГц). Режим резонанса необходим для устойчивой работы схемы. Когда напряжение на конденсаторе С3 достигнет величины пуска, лампа зажигается. При этом снижается регулирующая частота генератора и напряжения, а дроссель ограничивает ток.

Фото внутреннего устройства ЭПРА

Фото типового устройства ЭПРА

Ремонт ЭПРА


В случае отсутствия возможности быстрой замены вышедшего из строя ЭПРА можно попытаться отремонтировать балластник самостоятельно. Для этого выбираем следующую последовательность действий для устранения неисправности:

  • для начала проверяется целостность предохранителя. Эта поломка часто встречается из-за перегрузки (перенапряжения) в сети 220 вольт;
  • далее производится визуальный осмотр электронных компонентов: диодов, резисторов, транзисторов, конденсаторов, трансформаторов, дросселей;
  • в случае обнаружения характерного почернения детали или платы ремонт производится с помощью замены на исправный элемент. Как проверить своими руками неисправный диод или транзистор, имея в наличии обычный мультиметр, хорошо известно любому пользователю с техническим образованием;
  • может оказаться, что стоимость деталей для замены будет выше или сопоставима со стоимостью нового ЭПРА. В таком случае лучше не тратить время на ремонт, а подобрать близкую по параметрам замену.

ЭПРА для компактных ЛДС

Сравнительно недавно стали широко использоваться в быту люминесцентные энергосберегающие лампы, адаптированные под стандартные патроны для простых ламп накаливания – Е27, Е14, Е40. В этих устройствах электронные балласты находятся внутри патрона, поэтому ремонт этих ЭПРА теоретически возможен, но на практике проще купить новую лампу.

На фото показан пример такой лампы марки OSRAM, мощностью 21 ватт. Следует заметить, что в настоящее время позиции этой инновационной технологии постепенно занимают аналогичные лампы со светодиодными источниками. Полупроводниковая технология, непрерывно совершенствуясь, позволяет быстрыми темпами достигнуть цены на ЛДС, стоимость которых остается практически неизменной.

Лампа OSRAM с цоколем E27

Люминесцентные лампы T8

Лампы T8 имеют диаметр стеклянной колбы 26 мм. Широко используемые лампы T10 и T12 имеют диаметры 31,7 и 38 мм соответственно. Для светильников обычно применяют ЛДС мощностью 18 Вт. Лампы T8 не теряют работоспособности при скачках питающего напряжения, но при понижении напряжения более чем на 10% зажигание лампы не гарантируется. Температура окружающего воздуха также влияет на надежность работы ЛДС T8. При минусовых температурах снижается световой поток, и могут происходить сбои в зажигании ламп. Лампы T8 имеют срок службы от 9 000 до 12 000 часов.

Как изготовить светильник своими руками?

Сделать простейший светильник из двух ламп можно следующим образом:

  • выбираем подходящие по цветовой температуре (оттенку белого цвета) лампы по 36 Вт;
  • изготавливаем корпус из материала, который не воспламенится. Можно задействовать корпус от старого светильника. Подбираем ЭПРА под данную мощность. На маркировке должно быть обозначение 2 х 36;
  • подбираем к лампам 4 патрона с маркировкой G13 (зазор между электродами составляет 13 мм), монтажный провод и саморезы;
  • патроны необходимо закрепить на корпусе;
  • место установки ЭПРА выбирают из соображения минимизации нагрева от работающих ламп;
  • патроны подключаются к цоколям ЛДС;
  • для предохранения ламп от механического воздействия желательно установить прозрачный или матовый защитный колпак;
  • светильник закрепляется на потолке и подключается к сети питания 220 В.

Простейший светильник из двух ламп

lampagid.ru

Как выбрать балласт для люминесцентных ламп: устройство, как работает, виды

Когда балласт для люминесцентных ламп (ЛЛ) выходит из строя, осветительный прибор прекращает корректное функционирование. Вернуть его в обычный режим может только быстрая замена испортившегося элемента на исправный.

Купить деталь можно в специализированном магазине. Главное – выбрать модуль правильной модификации, соответствующий по мощности и другим параметрам имеющейся лампе.

Особенности подключения ЛЛ к сети

Люминесцентная лампа – практичный и экономный модуль, предназначенный для организации осветительных систем в бытовых, промышленных и технических помещениях.

Единственная сложность состоит в том, что напрямую подключить прибор к централизованным электроподающим коммуникациям не представляется возможным.

Электромагнитный балласт потребляет около 25% мощности осветительного прибора, таким образом на четверть снижая его эффективность и уровень КПД

Это обусловлено тем, что создание стойкого активирующего разряда в лампах люминесцентного типа и последующее ограничение возрастающего тока требуют организации некоторых специфических физических условий. Именно эти проблемы решает установка балластного прибора.

Что такое балласт

Балласт представляет собой устройство, регулирующее пусковые функции и подключающее к электрическим коммуникациям люминесцентные осветительные приборы.

Используется для поддержания корректного режима функционирования и эффективного ограничения рабочего тока.

Приобретает повышенную актуальность, когда в сети наблюдается недостаточная электрическая нагрузка и отсутствует необходимое ограничение при потреблении тока.

Общий принцип работы элемента

Внутри ламп дневного света находится электропроводная газовая среда, обладающая отрицательным сопротивлением. Это проявляется в том, что при повышении тока между электродами существенно снижается напряжение.

Компенсирует этот момент и обеспечивает корректную работу осветительного прибора, подключающийся в систему управления балластник.

Когда большая по величине сила тока поступает на любой люминесцентный прибор, он может выйти из строя. Чтобы этого не случилось, в конструкцию лампы включается балласт, исполняющий функции преобразователя

Он же на краткий период повышает общее напряжение и помогает люминесцентам зажечься, когда в центральной сети для этого не хватает ресурса. Дополнительные функции модуля варьируются в зависимости от его конструкционных особенностей и типа исполнения.

Разновидности и характеристики балластов

Сегодня максимально широко распространены электромагнитные и электронные балластные устройства. Они надежно работают и обеспечивают долгое правильное функционирование и комфортность эксплуатации люминесцентных ламп всех типов. Имеют одинаковый общий принцип действия, но несколько отличаются по отдельным возможностям.

Особенности электромагнитных изделий

Балласты электромагнитного типа используются для ламп, подключающихся к центральной электросети с применением стартера.

Подача напряжения в таком варианте сопровождается разрядом, последующим интенсивным разогревом и замыканием биметаллических электродных элементов.

Электромагнитный балласт от электронного отличается даже по внешнему виду. Первый имеет более массивную, высокую конструкцию, а второй представляет собой удлиненную тонкую плату, на которой располагаются все рабочие элементы

В момент, когда происходит замыкание стартерных электродов, рабочий ток резко увеличивается. Это объясняется ограничением максимального сопротивления дроссельной катушки.

После полного остывания стартера происходит размыкание биметаллических электродов.

Если в конструкции электромагнитного балласта выходит из строя стартер, в работе люминесцента появляется фальстарт. При этом, в момент включения лампа 3-4 раза мигает и только потом начинает гореть. Это приводит к потреблению лишней энергии и существенно снижает общий рабочий ресурс источника света

Когда цепь люминесцента размыкается стартером, в индукционной катушке немедленно образуется активный импульс высокого напряжения и происходит розжиг осветительного прибора.

К достоинствам устройства относятся:

  • высокий уровень надежности, доказанный временем;
  • эксплуатационная комфортность электромагнитного модуля;
  • простота сборки;
  • доступная цена, делающая изделие привлекательным для производителей источников света и потребителей.

Кроме позитивных моментов, пользователи отмечают обширный перечень минусов, которые портят общее впечатление о приборе.

Среди них отмечаются такие позиции, как:

  • наличие эффекта стробирования, при котором лампа мерцает с частотой 50 Гц и вызывает повышение уровня утомляемости у человека - это значительно снижает работоспособность, особенно когда осветительный прибор располагается в рабочем или учебном помещениях;
  • более длительное время, требующееся для запуска осветительного прибора – от 2-3 секунд вначале и до 5-8 к середине-концу эксплуатационного срока;
  • повышенное потребление электроэнергии, влекущее за собой неизбежное увеличение счетов за коммунальные платежи;
  • низкая надежность стартерного элемента;
  • слышимый специфический гул дроссельного устройства;
  • громоздкость конструкции и ее существенный вес.

При покупке все эти условия обязательно нужно учитывать, чтобы понимать, во что в будущем обойдется эксплуатация бытовой осветительной системы, оснащенной люминесцентами.

Электронные балластные модули

Балласт электронного типа используется для тех же самых целей, что и электромагнитный модуль. Однако, конструкционно и по принципу исполнения своих обязанностей эти приборы существенно отличаются друг от друга.

Дешевый электронный балласт, имеет простую автогенераторную схему с трансформатором и базовым выходным каскадом, функционирующим на биполярных транзисторах. Большой минус этих приборов – отсутствие защиты от аномальных рабочих режимов

Широкая популярность к изделиям пришла в начале 90-х. В это время их начали использовать в комплексе с разнообразными источниками света.

Изначально высокую по сравнению с электромагнитными изделиями стоимость производители компенсировали хорошей экономичностью приборов и прочими полезными характеристиками, свойствами.

Использование электронных балластов позволяло уменьшить общее потребление электрической энергии на 20-30%, сохранив при этом в полном объеме насыщенность, мощность и силу светопотока.

Этого эффекта удалось достичь путем увеличения базовой светоотдачи самой лампы на повышенной частоте и существенно более высоким КПД электронных модулей по сравнению с электромагнитными.

Самые уязвимые элементы электронного балластника это предохранитель (1), конденсатор (2) и транзисторы (3). Именно они обычно выходят из строя по различным объективным причинам и приводят лампу в нерабочее состояние

Мягкий запуск и щадящий рабочий режим дали возможность почти наполовину продлить люминисцентам жизнь, понизив таким способом общие эксплуатационные расходы на осветительную систему. Лампы требовалось менять значительно реже, а нужда в стартерах пропала вообще.

Кроме того, с помощью электронных балластов удалось избавиться от рабочих фоновых шумов и выраженного раздражающего мерцания, параллельно добившись стабильного и равномерного освещения помещений даже при колебаниях напряжения в сети в пределах 200-250 В.

Чтобы люминесцентная лампа не гудела и не мерцала, необходимо питать ее только высокочастотным током от 20 кГц и более. Для реализации этой задачи в схему включения должны входить выпрямитель, ВЧ генератор высокого напряжения и балласт, играющий роль импульсного источника питания

Дополнительно появилась возможность управлять яркостью лампы, подстраивая светопоток под индивидуальные желания и потребности пользователя.

Среди основных плюсов изделий выделились следующие критерии:

  • малый вес и компактность конструкции;
  • практически мгновенное, очень плавное включение, не оказывающее излишней нагрузки на люминесцентную лампу;
  • полное отсутствие видимого глазу моргания и различаемого шумового эффекта;
  • высокий коэффициент рабочей мощности, составляющий 0,95;
  • прямая экономия электрического тока в размере 22% - электронный модуль практически не греется по сравнению с электромагнитным и не расходует лишнего ресурса;
  • дополнительная защита, вмонтированная в блок, для обеспечения высокого уровня пожаробезопасности, и понижения потенциальных рисков, возникающих в процессе эксплуатации;
  • существенно увеличившаяся продолжительность службы люминесцентов;
  • светопоток с хорошей плотностью цвета, без перепадов даже при длительном горении не провоцирует утомляемость глаз людей, находящихся в комнате;
  • высокая эффективность функционирования осветительного прибора при отрицательных температурных показателях;
  • способность балласта автоматически подстроиться под параметры лампы, таким образом создавая оптимальный режим работы для себя и осветительного прибора.

Некоторые производители комплектуют свои электронные балласты специальным предохранителем. Он защищает устройства от перепадов напряжения, колебаний в центральной сети и ошибочной активации светильника без лампы.

Сегодня органы, занимающиеся охраной труда, рекомендуют с целью улучшения условий работы и повышения производительности, оснащать люминесцентные лампы, установленные в офисных помещениях, именно электронными, а не электромагнитными пусковыми устройствами

Из минусов электронных изделий обычно упоминают только стоимость, значительно более высокую по сравнению с электромагнитными модулями. Однако, это может иметь значение лишь в момент покупки.

В будущем, в процессе интенсивной эксплуатации, электронный балласт полностью отработает свою цену и даже начнет приносить выгоду, серьезно экономя электрический ресурс и снимая часть нагрузки с источника света.

Балласты для компактных ламп

Люминесцентные лампы компактного типа представляют собой приборы, аналогичные традиционным лампам накаливания с резьбовым цоколем E14 и E27.

Могут размещаться в современных и раритетных люстрах, бра, торшерах и прочих осветительных приборах.

Из-за конструкционных особенностей компактных люминесцентов к электронной «начинке» предъявляются повышенные требования. Бренды всегда учитывают их при производстве, а неизвестные изготовители, с целью удешевления, меняют многие элементы на более простые. Это существенно снижает эффективность и срок службы модуля

Комплектуются приборы такого класса, как правило, прогрессивным электронным балластом, который встраивается непосредственно во внутреннюю конструкцию и обычно располагается на плате лампового изделия.

На что смотреть при выборе

Выбирая балласт для люминесцентной лампы, первоочередно необходимо обращать внимание на такой параметр, как мощность модуля.

Она должна полностью совпадать с мощностью осветительного прибора, иначе лампа просто не сможет полноценно функционировать и выдавать светопоток в требуемом режиме.

Включать балласт в сеть без нагрузки категорически запрещено. Устройство может сразу же перегореть и придется его ремонтировать либо покупать новое

Правда, такие приборы считаются устаревшим, имеют громоздкие габариты и потребляют дополнительный энергоресурс. Это заметно снижает их привлекательность, даже несмотря на доступную изначальную цену.

Чтобы проверить исправность электронного балласта, пригодится специальный измерительный прибор – карманный осциллограф

Электронные устройства стоят значительно дороже. Особенно этот пункт касается изделий, выпущенных крутыми брендовыми производителями. Но их цена с лихвой компенсируется энергоэкономичностью, практичностью, безупречной сборкой и высоким уровнем общего качества приборов.

Подбор балласта по производителю

Завод-производитель – это еще один значимый критерий при покупке. Не стоит ориентироваться исключительно на цену и приобретать самую дешевую модель из всех, что предлагаются в магазине.

Особенности брендовых балластов

Безымянное изделие китайского изготовления может очень быстро выйти из строя и повлечь за собой последующие проблемы с работой самой лампочки и даже светильника.

Брендовые производители комплектуют балласты качественными, устойчивыми к износу деталями, которые обеспечивают корректную работу модуля в течение всего эксплуатационного периода

Лучше отдать предпочтение торговым маркам с надежной репутацией, отлично зарекомендовавшим себя длительной работой на рынке осветительного оборудования и сопутствующих элементов.

Такие устройства надежно отработают весь положенный срок, обеспечив полноценное функционирование люминесцента в любом осветительном приборе.

Балластные изделия, выпущенные на предприятиях популярных торговых марок, специализирующихся на изготовлении электрооборудования и сопутствующих элементов, имеют крепкий и прочный внешний корпус из термостойкого, несклонного к деформации пластикового состава.

Стоящая на изделиях маркировка IP2 показывает, что прибор имеет хороший уровень общей защиты и предохраняется от попадания внутрь коробки посторонних деталей размером более 12,5 мм.

Эксплуатация устройства комфортна и абсолютно безопасна. Конструкция полностью исключает возможность контакта пользователя с токопроводящими элементами.

Балластные модули с маркировкой IP2 надежны, практичны и удобны в бытовом применении, однако, уязвимы к проникновению внутрь пыли. Из-за этого небольшого минуса ставить их в лампы, освещающие запыленные рабочие помещения, нецелесообразно

Нормальный температурный диапазон для эффективной и продолжительной работы устройства довольно широк.

Брендовые балласты качественно справляются с поставленными задачами при морозах, доходящих до - 20 °C и отлично чувствуют себя в жаркие дни, когда воздух раскаляется до +40 °C.

Лучшие производители электромагнитных аппаратов

Большой популярностью у клиентов пользуются электромагнитные балластные устройства, изготовленные под брендом E.Next.

Это обусловлено тем, что компания предлагает по-настоящему качественные, надежные и прогрессивные модули, выполненные на самом высоком уровне в четком соответствии с требованиями, предъявляемыми к оборудованию такого класса.

Помимо гарантий и обслуживания, фирма E.Next предлагает клиентам пользовательскую техподдержку через call-центры. Позвонив туда, потребитель может задать оператору вопрос любой сложности и в течение нескольких минут получить профессиональный, понятный ответ

На все товары компания дает фирменную гарантию и предлагает покупателям высококачественный сервис на всех этапах сотрудничества.

Не меньшим спросом пользуются электромагнитные балласты, созданные известным и уважаемым европейским производителем электротехнического оборудования и сопутствующих элементов – компанией Philips.

Товары этого бренда считаются одними из самых качественных, надежных и эффективных.

Электромагнитные модули от Филипс представлены на рынке в самом широком ассортименте. Подобрать нужный вариант для лампы любой конфигурации не составит никакого труда

Балласты Филипс помогают экономить энергоресурс и нейтрализуют нагрузку, возникающую в процессе эксплуатации люминесцентных ламп.

Актуальные электронные модули

Изделия электронного типа относятся к современному виду оборудования и, помимо традиционных, имеют еще и дополнительные функции. В этом сегменте лидерские позиции занимают товары от немецкой компании Osram.

Их стоимость несколько выше, чем у китайских или отечественных аналогов, но значительно ниже по сравнению с таким конкурентами, как Philips и Vossloh-Schwabe.

У электронных балластов Osram есть целый ряд преимуществ. Они имеют аккуратную форму и скромные габариты, могут работать в температурном режиме -15…+50 °C и надежно служат в течение 100 000 часов

Среди бюджетных брендовых модулей ярко выделяются на фоне конкурентов электронные балласты Horos.

Несмотря на лояльную стоимость, эти предметы демонстрируют высокую рабочую эффективность и хороший уровень КПД, устраняют задержку при розжиге, снижают до минимума потребление энергии и повышают светоотдачу самой лампы.

С помощью этих средств можно устранить раздражающее мерцание в люминесцентных лампах и сделать осветительные приборы максимально удобными и эксплуатационно-комфортными.

Не отстает от маститых старожилов рынка и молодая, перспективно развивающаяся фирма Feron. Она предлагает пользователям продукцию европейского уровня по очень небольшой, разумной цене.

Балласты Feron сделаны аккуратно. Все детали имеют сертификаты соответствия. Внешний корпус, изготовленный из пластика, представляет собой удлиненный плоский прямоугольник. Изделие мало весит и легко монтируется в люминесцентные источники света любой конфигурации

Устройства балластного типа от Ферон предохраняют лампы от неожиданных электромеханических помех и перепадов напряжения, устраняют раздражающее глаза мерцание и помогают сэкономить более 30% электрической энергии.

Управляемый балластом от Feron люминесцент включается/выключается мгновенно. Фоновой звуковой эффект в процессе работы не наблюдается. Освещение получается мягким, равномерным и создает вокруг приятную, спокойную атмосферу.

Выводы и полезное видео по теме

Как работает электронный прибор в люминесцентной лампе. Подробное описание устройства и принципа работы изделия:

Чем отличаются друг от друга электромагнитный и электронный балласты. Особенности каждого из модулей и специфические нюансы их использования в бытовых осветительных приборах:

Особенности работы светильников, оснащенных балластами разных типов. Какие элементы более эффективны и почему. Практические рекомендации и полезные советы из личного опыта мастера:

Чтобы правильно подобрать балласт для бытовых ламп люминесцентного типа, нужно знать, как устроен этот элемент и какую функцию выполняет. Имея такую информацию, а также разбираясь в разновидностях прибора, приобрести нужную модификацию удастся без всяких сложностей.

Стоимость модуля зависит от завода-изготовителя, но даже брендовые изделия имеют вполне лояльную цену и ущерба бюджету среднестатистического потребителя не наносят.

sovet-ingenera.com

Как проверить баластник для люминесцентных ламп, ремонт

Балласт для газоразрядной лампы (люминесцентные источники света) применяется с целью обеспечения нормальных условий работы. Другое название – пускорегулирующий аппарат (ПРА). Существует два варианта: электромагнитный и электронный. Первый из них отличается рядом недостатков, например, шум, эффект мерцания люминесцентной лампы.

Второй вид балласта исключает многие минусы в работе источника света данной группы, поэтому и более популярен. Но поломки в таких приборах тоже случаются. Прежде чем выбрасывать, рекомендуется проверить элементы схемы балласта на наличие неисправностей. Вполне реально самостоятельно выполнить ремонт ЭПРА.

Разновидности и принцип функционирования

Главная функция ЭПРА заключается в преобразовании переменного тока в постоянный. По-другому электронный балласт для газоразрядных ламп называется еще и высокочастотным инвертором. Один из плюсов таких приборов – компактность и, соответственно, небольшой вес, что дополнительно упрощает работу люминесцентных источников света. А еще ЭПРА не создает шум при работе.

Балласт электронного типа после подключения к источнику питания обеспечивает выпрямление тока и подогрев электродов. Чтобы люминесцентная лампа зажглась, подается напряжение определенной величины. Настройка тока происходит в автоматическом режиме, что реализуется посредством специального регулятора.

Такая возможность исключает вероятность появления мерцания. Последний этап – происходит высоковольтный импульс. Поджиг люминесцентной лампы осуществляется за 1,7 с. Если при запуске источника света имеет место сбой, тело накала моментально выходит из строя (перегорает). Тогда можно попытаться сделать ремонт своими руками, для чего требуется вскрыть корпус. Схема электронного балласта выглядит так:

Основные элементы ЭПРА люминесцентной лампы: фильтры; непосредственно сам выпрямитель; преобразователь; дроссель. Схема обеспечивает еще и защиту от скачков напряжения питающего источника, что исключает необходимость ремонта по данной причине. А, кроме того, балласт для газоразрядных ламп реализует функцию коррекции коэффициента мощности.

По целевому назначению встречаются следующие виды ЭПРА:

  • для линейных ламп;
  • балласт, встроенный в конструкцию компактных люминесцентных источников света.

ЭПРА для люминесцентных ламп подразделяются на группы, отличные по функциональности: аналоговые; цифровые; стандартные.

Схема подключения, запуск

Пускорегулирующий аппарат подключается с одной стороны к источнику питания, с другой – к осветительному элементу. Нужно предусмотреть возможность установки и крепления ЭПРА. Подключение производится в соответствии с полярностью проводов. Если планируется установить две лампы через ПРА, используется вариант параллельного соединения.

Схема будет выглядеть следующим образом:

Группа газоразрядных люминесцентных ламп не может нормально работать без пускорегулирующего аппарата. Его электронный вариант конструкции обеспечивает мягкий, но одновременно с тем и практически мгновенный запуск источника света, что дополнительно продлевает срок его службы.

Поджиг и поддержание функционирования лампы осуществляется в три этапа: прогрев электродов, появление излучения в результате высоковольтного импульса, поддержание горения осуществляется посредством постоянной подачи напряжения небольшой величины.

Определение поломки и ремонтные работы

Если наблюдаются проблемы в работе газоразрядных ламп (мерцание, отсутствие свечения), можно самостоятельно сделать ремонт. Но сначала необходимо понять, в чем заключается проблема: в балласте или осветительном элементе. Чтобы проверить работоспособность ЭПРА, из светильников удаляется линейная лампочка, электроды замыкаются, и подсоединяется обычная лампа накаливания. Если она загорелась, проблема не в пускорегулирующем аппарате.

В противном же случае нужно искать причину поломки внутри балласта. Чтобы определить неисправность люминесцентных светильников, необходимо «прозвонить» все элементы по очереди. Начинать следует с предохранителя. Если один из узлов схемы вышел из строя, необходимо заменить его аналогом. Параметры можно увидеть на сгоревшем элементе. Ремонт балласта для газоразрядных ламп предполагает необходимость использования навыков владения паяльником.

Если с предохранителем все в порядке, далее следует проверить на исправность конденсатор и диоды, которые установлены в непосредственной близости к нему. Напряжение конденсатора не должно быть ниже определенного порога (для разных элементов эта величина разнится). Если все элементы ПРА в рабочем состоянии, без видимых повреждений и прозвон также ничего не дал, осталось проверить обмотку дросселя.

В некоторых случаях проще купить новую лампу. Это целесообразно сделать в случае, когда стоимость отдельных элементов выше ожидаемого предела или при отсутствии достаточных навыков в процессе пайки.

Ремонт компактных люминесцентных ламп выполняется по сходному принципу: сначала разбирается корпус; проверяются нити накала, определяется причина поломки на плате ПРА. Часто встречаются ситуации, когда балласт полностью исправен, а нити накаливания перегорели. Починку лампы в этом случае произвести сложно. Если в доме имеется еще один сломанный источник света сходной модели, но с неповрежденным телом накала, можно совместить два изделия в одно.

Таким образом, ЭПРА представляет группу усовершенствованных аппаратов, обеспечивающих эффективную работу люминесцентных ламп. Если было замечено мерцание источника света или он и вовсе не включается, проверка балласта и его последующий ремонт позволят продлить срок службы лампочки.

Оценка статьи:

proosveschenie.ru

Продолжая тему ремонта светильников, многим будет полезно знать, не только как проверить люминесцентную лампу, но также и то, как проверить балласт люминесцентной лампы. Для быстрой проверки необходимо минимум приборов: контрольная лампочка, провод, пара скрепок, а также несколько минут свободного времени.

Как проверить балласт люминесцентной лампы?

Для начала необходимо представить схему электронного балласта люминесцентной лампы и внести в ее конструкцию контрольную лампочку (обозначенная красными линиями).

Схемы большинства светильников практически идентичны друг другу, отличаются лишь небольшими изменениями.

В общих словах, перед тем, как проверять электронный балласт для люминесцентных ламп, необходимо снять трубку, затем закоротить выводы нитей накала, а дальше между ними подключить обычную лампочку накала на 220 В небольшой мощности.

Внимание! Для избегания выходя из строя электронных компонентов балласта, не рекомендуется включать в сеть схему без нагрузки, т.е. без лампочки.

Для простых светильников очень удобно применять скрепку, она надежно замыкает контакты, идущие к трубке.

После всех манипуляций такую конструкцию можно включать в сеть. Рабочий балласт сможет подать напряжение на лампочку, и как видно из фото она будет светиться.

Если производился ремонт балласта своими руками, и необходимо проверять его работоспособность, лучше всего последовательно со светильником подключить еще одну лампочку. При допущенных в работе ошибках, или коротком замыкании эта лампочка будет светиться ярко, а компоненты схемы не выйдут из строя.

Вконтакте

Одноклассники

comments powered by HyperComments

diodnik.com

Балласт электронный: схема 2х36

Электронный балласт — это устройство, которое включает люминесцентные лампы. Модели между собой отличаются по номинальному напряжению, сопротивлению и перегрузке. Современные устройства способны работать в экономном режиме. Подключение балластов осуществляется через контроллеры. Как правило, они применяются электродного типа. Также схема подключения модели предполагает применение переходника.

Стандартная схема устройства

Схемы электронных балластов люминесцентных ламп включают в себя набор трансиверов. Контакты у моделей применяются коммутируемого типа. Обычное устройство состоит из конденсаторов емкостью до 25 пФ. Регуляторы в устройствах могут применяться операционного либо проводникового типа. Стабилизаторы в балластах устанавливаются через обкладку. Для поддержания рабочей частоты в устройстве имеется тетрод. Дроссель в данном случае крепится через выпрямитель.

Устройства низкого КПД

Балласт электронный (схема 2х36) низкого КПД подходит для ламп на 20 Вт. Стандартная схема включает в себя набор расширительных трансиверов. Пороговое напряжение у них составляет 200 В. Тиристор в устройствах данного типа используется на обкладке. С перегрузками борется компаратор. У многих моделей используется преобразователь, который работает при частоте 35 Гц. С целью повышения напряжения применяется тетрод. Дополнительно используются переходники для подключения балластов.

Устройства высокого КПД

Электронный балласт (схема подключения показана ниже) имеет один транзистор с выходом на обкладку. Пороговое напряжение элемента равняется 230 В. Для перегрузок используется компаратор, который работает на низких частотах. Данные устройства хорошо подходят для ламп мощностью до 25 Вт. Стабилизаторы довольно часто применяются с переменными транзисторами.

Во многих схемах используются преобразователи, и рабочая частота у них равняется 40 Гц. Однако она может повышаться при возрастании перегрузок. Также стоит отметить, что у балластов используются динисторы для выпрямления напряжения. Регуляторы часто устанавливаются за трансиверами. Операционные налоги выдают частоту не более 30 Гц.

Устройство на 15 Вт

Балласт электронный (схема 2х36) для ламп на 15 Вт собирается с интегральными трансиверами. Тиристоры в данном случае крепятся через дроссель. Также стоит отметить, что есть модификации на открытых переходниках. Они выделяются высокой проводимостью, но работают при низкой частоте. Конденсаторы используются только с компараторами. Номинальное напряжение при работе доходит до 200 В. Изоляторы используются только в начале цепи. Стабилизаторы применятся с переменным регулятором. Проводимость элемента составляет не менее 5 мк.

Модель на 20 Вт

Электрическая схема электронного балласта для ламп на 20 Вт подразумевает применение расширительного трансивера. Транзисторы стандартно используются разной емкости. В начале цепи они устанавливаются на 3 пФ. У многих моделей показатель проводимости доходит до 70 мк. При этом коэффициент чувствительности сильно не снижается. Конденсаторы в цепи используются с открытым регулятором. Понижение рабочей частоты осуществляется через компаратор. При этом выпрямление тока происходит благодаря работе преобразователя.

Если рассматривать схемы на фазовых трансиверах, то там имеется четыре конденсатора. Емкость у них стартует от 40 пФ. Рабочая частота балласта поддерживается на уровне 50 Гц. Триоды для этого используются на операционных регуляторах. Для понижения коэффициента чувствительности можно встретить различные фильтры. Выпрямители довольно часто используются на подкладках и устанавливаются за дросселем. Проводимость балласта в первую очередь зависит от порогового напряжения. Также учитывается тип регулятора.

Схема балласта на 36 Вт

Балласт электронный (схема 2х36) для ламп на 36 Вт имеет расширительный трансивер. Подключение устройства происходит через переходник. Если говорить про показатели балластов, то номинальное напряжение равняется 200 Вт. Изоляторы для устройств подходят низкой проводимости.

Также схема электронного балласта 36W включает в себя конденсаторы емкостью от 4 пФ. Тиристоры довольно часто устанавливаются за фильтрами. Для управления рабочей частотой имеются регуляторы. У многих моделей используется два выпрямителя. Рабочая частота у балластов данного типа максимум равняется 55 Гц. При этом перегрузка может сильно возрастать.

Балласт Т8

Электронный балласт Т8 (схема показана ниже) имеет два транзистора с низкой проводимостью. У моделей используются только контактные тиристоры. Конденсаторы в начале цепи имеются большой емкости. Также стоит отметить, что балласты производятся на контакторных стабилизаторах. У многих моделей поддерживается высокое напряжение. Коэффициент тепловых потерь составляет около 65 %. Компаратор устанавливается с частотой 30 Гц и проводимостью 4 мк. Триод для него подбирается с обкладкой и изолятором. Включение устройства осуществляется через переходник.

Использование транзисторов MJE13003A

Балласт электронный (схема 2х36) с транзисторами MJE13003A включает в себя только один преобразователь, который находится за дросселем. У моделей используется контактор переменного типа. Рабочая частота у балластов составляет 40 Гц. При этом пороговое напряжение при перегрузках равняется 230 В. Триод в устройствах применяется полюсного типа. У многих моделей имеется три выпрямителя с проводимостью от 5 мк. Недостатком устройства с транзитами MJE13003A можно считать высокие тепловые потери.

Использование транзисторов N13003A

Балласты с данными транзисторами ценятся за хорошую проводимость. У них малый коэффициент тепловых потерь. Стандартная схема устройства включает проводной преобразователь. Дроссель в данном случае используется с обкладкой. У многих моделей низкая проводимость, но рабочая частота равняется 30 Гц. Компараторы для модификаций подбираются на волновом конденсаторе. Регуляторы подходят только операционного типа. Всего в устройстве имеется два реле, а контакторы устанавливаются за дросселем.

Использование транзисторов КТ8170А1

Балласт на транзисторе КТ8170А1 состоит из двух трансиверов. У моделей имеется три фильтра для импульсных помех. За включение трансивера отвечает выпрямитель, который работает при частоте 45 Гц. У моделей используются преобразователи только переменного типа. Они работают при пороговом напряжении 200 В. Данные устройства замечательно подходят для ламп на 15 Вт. Триоды в контроллерах используются выходного типа. Показатель перегрузки может меняться, и это в первую очередь связано с пропускной способностью реле. Также надо помнить о емкости конденсаторов. Если рассматривать проводные модели, то вышеуказанный параметр у элементов не должен превышать 70 пФ.

Использование транзисторов КТ872А

Принципиальная схема электронного балласта на транзисторах КТ872А предполагает использование только переменных преобразователей. Пропускная способность составляет около 5 мк, но рабочая частота может меняться. Трансивер для балласта подбирается с расширителем. У многих моделей используется несколько конденсаторов разной емкости. В начале цепи применяются элементы с обкладками. Также стоит отметить, что триод разрешается устанавливать перед дросселем. Проводимость в таком случае составит 6 мк, а рабочая частота не будет выше 20 Гц. При напряжении 200 В перегрузка у балласта составит около 2 А. Для решения проблем с пониженной чувствительностью используются стабилизаторы на расширителях.

Применение однополюсных динисторов

Электронный балласт (2х36 схема) с однополюсными динисторами способен работать при перегрузке свыше 4 А. Недостатком таких устройств является высокий коэффициент тепловых потерь. Схема модификации включает в себя два трансивера низкой проводимости. У моделей рабочая частота составляет около 40 Гц. Кондукторы крепятся за дросселем, а реле устанавливается только с фильтром. Также стоит отметить, что у балластов имеется проводниковый транзистор.

Конденсатор используется низкой и высокой емкости. В начале цепи применяются элементы на 4 пФ. Показатель сопротивления на этом участке составляет около 50 Ом. Также надо обратить внимание на то, что изоляторы используются только с фильтрами. Пороговое напряжение у балластов при включении равняется примерно 230 В. Таким образом, модели можно использовать для ламп разной мощности.

Схема с двухполюсным динистором

Двухполюсные динисторы в первую очередь обеспечивают высокую проводимость у элементов. Электронный балласт (2х36 схема) производится с компонентами на коммутаторах. При этом регуляторы используются операционного типа. Стандартная схема устройства включает в себя не только тиристор, но и набор конденсаторов. Трансивер при этом используется емкостного типа, и у него высокая проводимость. Рабочая частота элемента составляет 55 Гц.

Основной проблемой устройств является низкая чувствительность при больших перегрузках. Также стоит отметить, что триоды способны работать только при повышенной частоте. Таким образом, лампы часто мигают, а вызвано это перегревом конденсаторов. Чтобы решить эту проблему, на балласты устанавливаются фильтры. Однако они не всегда способны справиться с перегрузками. В данном случае стоит учитывать амплитуду скачков в сети.

fb.ru

Что такое ЭПРА, назначение и принцип работы электронного балласта в светильнике

Люминесцентные светильники обладают некоторыми недостатками, которые становятся заметными после включения света. Сильное гудение и частое мерцание света, наблюдающееся при работе подобных встроенных светильников, может вывести из душевного равновесия любого человека. Единственным решением этой проблемы является установка специального пускорегулирующего устройства под названием ЭПРА.

Производство люминесцентных светильников задумывалось для развития систем освещения, использовавших обычные лампы накаливания, которые обладали крайне малым сроком эксплуатации. Максимальный срок службы лампы накаливания составляет около двух тысяч часов, что не может сравниться с долговечностью люминесцентных ламп, который насчитывает более 16 тысяч часов. Кроме этого, люминесцентные лампы обладают хорошим световым потоком, который превышает свет от обычных ламп более чем в шесть раз .

Электронный балласт ЭПРА

Электронным балластом называется специальное изделие, которое автоматически запускает люминесцентные лампы и продолжительное время поддерживает их в работе. Изготовление ЭМПРА началось три десятилетия тому назад. Они должны были заменить большие пускорегулирующие изделия. Специалисты связывают это с тем, что у старых пускорегулирующих аппаратов было очень много недостатков, которые сильно осложняли их использование.

Перечень основных недостатков такой:

  • располагающийся в панели пускорегулирующего аппарата дроссель был больших габаритов и очень сильно шумел при работе;
  • довольно частое мерцание света;
  • очень маленький коэффициент полезного действия;
  • при поломке стартера может наблюдаться запоздалое срабатывание люминесцентной лампы.

Как устроен ЭПРА 18 Вт для светодиодных ламп

Новый ЭМПРА для светодиодной лампы , приобретенный в любом магазине, представляет собой такие составляющие:

  1. Качественный фильтр частоты , который сглаживает помехи низкого уровня и направлен на выводы изделия. Подобный фильтр помогает уменьшить воздействие светодиодной лампы на остальное бытовое оборудование, к примеру, на число помех при работе радиоприемников или телевизоров.
  2. Мощный выпрямитель , который преобразовывает в схеме переменное напряжение в постоянное.
  3. Небольшой инвертор .
  4. Разные специальные узлы, которые необходимы для корректировки мощности в схеме светодиодной лампы.
  5. Малогабаритный фильтр постоянного напряжения.
  6. Качественный дроссель, ограничивающий максимальный ток в схеме.

А также инвертор зачастую оснащен приспособлением, которое несет ответственность за плавность регулирования яркости света светодиодной лампы.

ЭПРА для люминесцентных ламп

Люминесцентный светильник, который снабжен ЭПРА , начинает работать, проходя несколько основных этапов.

Включение люминесцентного светильника

Специальный выпрямитель, который отвечает за преобразование постоянного напряжения в переменное, передает его на буфер мощного конденсатора. Далее, это напряжение проходит дальше и оказывается на полумостовом инверторе. В это время заряжаются все конденсаторы и микросхемы маленького напряжения.

Когда значение напряжения достигает показателя 7 вольт, то начинается намеренное сбрасывание микросхемы, а потом заряжается управляющий конденсатор, который регулируют несколько транзисторов. При достижении напряжением значения в 12 вольт, элементы люминесцентной лампы быстро нагреваются.

Предварительный нагрев люминесцентного светильника

При перемещении тока в изделии, сразу начинается уменьшение максимальной частоты колебаний, а значение напряжения возрастает. Прогревается люминесцентный светильник всего несколько секунд, если начинать отсчет с момента подачи напряжения на изделие. В этом случае электронный балласт играет роль систематизатора, потому что он не дает лампе запустится, не пройдя этап подготовительного прогрева. Это поможет избежать многих проблем в работе светильника.

Зажигание люминесцентного светильника

Значения показателей полумоста, к примеру, его амплитуды, уменьшаются до своего минимума. Для того чтобы люминесцентный светильник загорелся, необходимо напряжение около 620 вольт. В противном случае он просто не будет работать. Специальный дроссель способен значительно превысить это значение, увеличивая напряжение в электрической сети, что в дальнейшем приводит к зажиганию светильника. Обычно весь этот процесс занимает около нескольких секунд.

Горение люминесцентного светильника

Из-за работы электронного балласта, сила тока не превышает оптимальное значение для качественной работы лампы. ЭПРА полностью контролирует управление амплитудой переключения полумоста, обеспечивая тем самым стабильную работу светильника.

ЭПРА схема подключения

Сначала необходимо аккуратно разобрать люминесцентный светильник. Далее, стоит извлечь из него устаревшие компоненты изделия. Это, прежде всего, дроссель, разные конденсаторы, стартер и другие элементы. В светильнике необходимо оставить лишь люминесцентные лампы, жгуты проводов и ЭПРА.

Сделать ЭПРА подключение способен абсолютно любой человек, обладающий минимальными познаниями о работе электрических схем. Конечно, что людям, не располагающим опытом в этой области, даже и не следует пытаться, а необходимо обратиться к опытному электрику.

Для подключения электронного балласта будут необходимы такие инструменты и материалы:

  • набор отверток;
  • бокорезы;
  • прибор, определяющий фазы тока;
  • небольшое количество изоленты;
  • довольно острый нож, необходимый для обработки концов проводов;
  • крепежные материалы.

Перед тем как собрать схему, необходимо определиться с местоположением изделия ЭПРА внутри люминесцентного светильника. При этом стоит учесть длины абсолютно всех проводов и наличие удобного доступа к нужной управляющей системе. Именно поэтому стоит заранее проделать отверстие в корпусе светильника, куда есть возможность установить ЭПРА при помощи крепежных материалов. Далее, нужно подключить электронный балласт к разъемам светильника. Существует еще один не менее важный момент, который заключается в том, что мощность ЭПРА обязана быть в несколько раз больше, чем у люминесцентного светильника.

Как только окончен процесс правильной сборки люминесцентного светильника с устройством ЭПРА, необходимо установить его на нужное место. Сначала стоит проверить мультиметром все провода, которые торчат из стены, на присутствие в них рабочего напряжения. Когда оно отсутствует, то нужно соединить все контакты с оборудованием. После всех этих действий, стоит сделать тестовый запуск светильника, оборудованного ЭПРА. В случае когда все действия прошли успешно, то люминесцентные лампы обязаны загореться одновременно, без дополнительного процесса разогрева, а излучаемый свет не должен часто мерцать.

Достоинства и недостатки ЭПРА 18 Вт

Опытные электрики выделяют несколько главных достоинств использования электронных балластов в работе люминесцентных светильников. К ним, прежде всего, можно отнести:

  1. Сбережение максимальной мощности света , при уменьшении количества потребляемой блоком питания электрической энергии.
  2. Отсутствие сильного мерцания света , которое считается особенностью люминесцентных светильников.
  3. Уменьшение шума в процессе работы светильника.
  4. Большой срок эксплуатации лампы, что стало возможным из-за применения устройства ЭПРА.
  5. Удобное управление яркостью света люминесцентного светильника.
  6. Устойчивость к колебаниям и перепадам рабочего напряжения в электрической сети питания.
  7. Большая экономия в плане следующих замен основных деталей светильника. Из-за того, что при помощи блока питания будет использоваться наиболее плавный режим пуска изделия, то это может увеличить срок эксплуатации стартеров и люминесцентных ламп.

Главным недостатком применения ЭПРА является, как и у других новейших технологий и изделий, очень высокая стоимость по сравнению с остальными подобными блоками питания.

instrument.guru

Электронный балласт для люминесцентных ламп. Устройство и принципы работы

Несмотря на то, что долговечные и надёжные люминесцентные лампы прочно вошли в нашу жизнь, усовершенствованный пускорегулирующий механизм к ним ещё не оценён потребителями по достоинству. Основная причина этого – высокая цена на электронные пускорегулирующие аппараты.

Главное преимущество схемы балласта для люминесцентных ламп заключается в экономии энергии, потребляемой источником света (до 20%) и увеличении срока её службы. Потратив деньги на покупку ЭПРА, мы экономим на электроэнергии и приобретении новых ламп в будущем. К преимуществам также можно отнести бесшумность, мягкость пуска и простоту установки.

Воспользовавшись прилагаемой к устройству инструкцией, компактную микросхему электронного балласта удастся без проблем установить в светильник. Заменив ею традиционный дроссель, стартер и конденсатор, мы позволим лампе стать более экономной.

Устройство ЭПРА для люминесцентных ламп

Схемы электронных балластов для люминесцентных ламп выглядят следующим образом:


На плате ЭПРА находится:

  1. Фильтр электромагнитных помех, который устраняет помехи, приходящие со стороны сети. А также гасит электромагнитные импульсы самой лампы, которые могут негативно влиять на человека и окружающие бытовые приборы. Например, создавать помехи в работе телевизора или радиоприёмника.
  2. Задача выпрямителя - преобразовывать постоянный ток сети в переменный, подходящий для питания лампы.
  3. Коррекция коэффициента мощности – схема, отвечающая за контроль сдвига по фазе переменного тока, проходящего через нагрузку.
  4. Сглаживающий фильтр предназначен для снижения уровня пульсации переменного тока.
  5. Как известно, выпрямитель идеально выпрямить ток не в состоянии. На выходе из него пульсация может составлять от 50 до 100 Гц, что неблагоприятно сказывается на работе лампы.

  6. Инвертор используется полумостовой (для небольших ламп) или мостовой с большим количеством полевых транзисторов (для мощных ламп). КПД у первого типа относительно невысокий, но это компенсируется микросхемами-драйверами. Основная задача узла – преобразование постоянного тока в переменный.
  7. Перед тем, как выбрать энергосберегающую лампочку, рекомендуется изучить технические характеристики её разновидностей, их преимущества и недостатки. Особое внимание следует уделить месту установки компактной люминесцентной лампы. Очень частое включение-выключение или морозная погода на улице значительно сокращают продолжительность работы КЛЛ.

    Подключение LED лент в сеть 220 Вольт осуществляется с учетом всех параметров осветительных устройств - длина, количество, монохромность или многоцветность. Подробнее об этих особенностях - здесь.

  8. Дроссель для люминесцентных ламп (специальная индукционная катушка из свёрнутого проводника) участвует в подавлении помех, накоплении энергии и плавной регулировке яркости.
  9. Защита от перепадов напряжения – устанавливается не во всех ЭПРА. Защищает от колебаний напряжения в сети и ошибочного пуска без лампы.

Принцип действия устройства

Схему включения люминесцентной лампы вместе с балластом можно разделить на четыре основные фазы.


Частота тока падает до номинальной рабочей частоты. В процессе работы конденсаторы низкого напряжения постоянно заряжаются. Активируется упреждающее управление, которое регулирует частоту переключения полумоста.

Мощность лампы поддерживается в достаточно стабильном положении, даже если происходят перепады напряжения в сети.

Выводы:

  • Задействование схемы ЭПРА для люминесцентных ламп исключает сильное нагревание прибора, поэтому о пожарной безопасности светильника можно не беспокоиться.
  • Устройством обеспечивается равномерное свечение – глаза не устают.
  • С недавнего времени в офисных помещениях правилами охраны труда рекомендовано использовать ЭПРА совместно со всеми люминесцентными лампами.

Видео с примером работы люминесцентной лампы от ЭПРА