Балансировка вращающихся деталей при ремонте машин. Балансировка деталей и сборочных единиц 1 балансировка деталей и их назначение

Неуравновешенность любой вращающейся детали тепловоза может возникнуть как в процессе эксплуатации вследствие неравномерного износа, изгиба, скопления загрязнений в каком-либо одном месте, при утере балансировочного груза, так и в процессе ремонта из-за неправильной обработки детали (смещения оси вращения) или неточной центровки валов. Для уравновешивания деталей их подвергают балансировке. Существуют два вида балансировки : статическая и динамическая .

Рис. 1. Схема статического уравновешивания деталей:

Т1 — масса неуравновешенной детали; Т2 — масса уравновешивающего груза;

L1, L2 — их расстояния от оси вращения.

Статическая балансировка . У неуравновешенной детали ее масса располагается несимметрично относительно оси вращения. Поэтому при статическом положении такой детали, т. е. когда она находится в покое, центр тяжести будет стремиться занять нижнее положение (рис.1). Для уравновешивания детали добавляют с диаметрально противоположной стороны груз массой Т2 с таким расчетом, чтобы его момент Т2L2 был равен моменту неуравновешенной массы Т1L1. При этом условии деталь будет находиться в равновесии при любом положении, так как центр тяжести ее будет лежать на оси вращения. Равновесие может быть достигнуто также путем удаления части металла детали высверловкой, спиливанием или фрезерованием со стороны неуравновешенной массы Т1. На чертежах деталей и в Правилах ремонта на балансировку деталей дается допуск, который называют дисбалансом (г/см).

Статической балансировке подвергают плоские детали, имеющие небольшое отношение длины к диаметру: зубчатое колесо тягового редуктора, крыльчатку вентилятора холодильника и т.п. Статическая балансировка ведется на горизонтально-параллельных призмах, цилиндрических стержнях или на роликовых опорах. Поверхности призм, стержней и роликов должны быть тщательно обработаны. Точность статической балансировки во многом зависит от состояния поверхностей этих деталей.

Динамическая балансировка . Динамической балансировке обычно подвергают детали, длина которых равна или больше их диаметра. На рис. 2 показан статически отбалансированный ротор, у которого масса Т уравновешена грузом массой М. Этот ротор при медленном вращении будет находиться в равновесии в любом положении. Однако при быстром его вращении возникнут две равные, но противоположно направленные центробежные силы F1 и F2. При этом образуется момент FJU который стремится повернуть ось ротора на некоторый угол вокруг его центра тяжести, т.е. наблюдается динамическое неравновесие ротора со всеми вытекающими отсюда последствиями (вибрация, неравномерный износ и т. п.). Момент этой пары сил может быть уравновешен только другой парой сил, действующей в той же плоскости и создающей равный противодействующий момент.


Для этого в нашем примере нужно приложить к ротору в той же плоскости (вертикальной) два груза массами Шх = т2 на равном расстоянии от оси вращения. Грузы и их расстояния от оси вращения подбирают так, чтобы центробежные силы от этих грузов создавали момент /уь противодействующий моменту FJi и уравновешивающий его. Чаще всего уравновешивающие грузы прикрепляют к торцовым плоскостям деталей или с этих плоскостей удаляют часть металла.

Рис. 2. Схема динамического уравновешивания деталей:

Т — масса ротора; М — масса уравновешивающего груза; F1,F2 — неуравновешенные, приведенные к плоскостям массы ротора; m1,m2 — уравновешенные, приведенные к плоскостям массы ротора; Р1 Р 2 — уравновешивающие центробежные силы;

При ремонте тепловозов динамической балансировке подвергают такие быстровращающиеся детали, как ротор турбокомпрессора, якорь тягового электродвигателя или другой электрической машины, рабочее колесо воздуходувки в сборе с приводной шестерней, вал водяного насоса в сборе с крыльчаткой и зубчатым колесом, карданные валы привода силовых механизмов.

Рис. 3. Схема балансировочного станка консольного типа:

1 — пружина; 2 — индикатор; 3 якорь; 4 — рама; 5 — опора станка; 6 — опора станины;

I, II — плоскости

Динамическое уравновешивание ведется на балансировочных станках. Принципиальная схема такого станка консольного типа показана на рис. 3. Балансировка, например, якоря тягового электродвигателя ведется в таком порядке. Якорь 3 укладывают на опоры качающейся рамы 4. Рама одной точкой упирается на опору станка 5, а другой на пружину 1. При вращении якоря неуравновешенная масса любого его участка (кроме масс, лежащих в плоскости II — II) вызывает качание рамы. Амплитуда колебания рамы фиксируется индикатором 2.

Чтобы уравновесить якорь в плоскости I — I, к его торцу со стороны коллектора (к нажимному конусу) прикрепляют поочередно различные по массе пробные грузы и добиваются прекращения колебания рамы или его уменьшения до допускаемой величины. Затем якорь переворачивают так, чтобы плоскость I— I проходила через неподвижную опору станины 6, и повторяют те же операции для плоскости II— II. В этом случае балансировочный груз прикрепляют к задней нажимной шайбе якоря.

После окончания всех работ по комплектованию детали подобранных комплектов маркируют (буквами или цифрами) согласно требованиям чертежей

При технологической обработке вращающихся деталей (шкивов, зубчатых колес, валов, барабанов и т. д.) трудно получить их полную уравновешенность вследствие неоднородности металла (пустоты, раковины при отливке, некоторые неточности при механической обработке и сборке). Неуравновешенность вращающейся детали выражается в том, что центр тяжести не совпадает с осью вращения. Кроме того, эта ось вращения не является главной центральной осью инерции вращающейся детали. Самый процесс уравновешивания вращающейся детали называют балансировкой. Имеются два вида балансировки - статическая и динамическая .

Чтобы статически уравновесить вращающуюся деталь, надо центр ее тяжести перенести на геометрическую ось вращения. Такой вид уравновешивания называется статической балансировкой.


Рис. 110. Виды статической балансировки :

а - положение трех главных центральных осей; б - пример балансировки; в -установка для статической балансировки: 1, 3 - направляющие, 2 -уравновешиваемая деталь, г - профили направляющих

На рис. 110, а даны положения трех главных центральных осей XX, YY и ZZ. Если центр тяжести S вращающегося тела перенести в точку О пересечения главных центральных осей, то это тело будет находиться в равновесии.

Пусть центр тяжести S диска А удален от оси вращения YY на расстояние l 1 , тогда при вращении диска А появится центральная сила инерции Р и. Эта сила Р и при вращении диска А будет создавать дополнительное давление на вал и на подшипник. При этом давление от силы инерции намного превосходит задаваемые силы, особенно при больших числах оборотов вала.

Неуравновешенность центробежных сил приводит к упругим периодическим колебаниям вала. При больших скоростях эти колебания вала передаются через подшипники и станину на фундамент, который может подвергнуться преждевременному разрушению.

Чтобы уравновесить силу инерции Р и, надо центр тяжести перенести на ось вращения. Это можно осуществить, приложив с противоположной стороны в точке S" силу Р и " :

Объясним это на примерах.

На круглом вращающемся диске (рис. 110, б) закреплена масса m 1 , удаленная от оси вращения на расстояние r 1 . Требуется уравновесить массу m 1 другой массой m 2 , закрепленной с противоположной стороны на расстоянии r 2 . Полное уравновешивание диска произойдет тогда, когда развиваемые массами m 1 и m 2 силы инерции Р и1 и Р и2 будут равны между собой.

Самым простым устройством для статической балансировки являются параллельные стенды. Конструкция их ясна из рис. 110, в. Профили направляющих, по которым перекатывается уравновешиваемая деталь, показаны на рис. 110, г. Чтобы уменьшить коэффициент трения, рабочая часть направляющих должна быть закалена и тщательно отшлифована. Ширину b делают минимальной, чтобы не создавать вмятин на поверхности цапф.

Стенд для балансировки должен быть снабжен комплектом направляющих с различной шириной опорной части.

Направляющие круглого сечения, не имеющие плоской опорной поверхности, используются для деталей массой 40-50 кг. Преимущество круглых направляющих заключается в простоте обработки и в возможности путем поворота их на небольшой угол исключать из зоны контакта поврежденные места.

Для балансировки тяжелых деталей и узлов применяются направляющие квадратного или прямоугольного сечения.

Статическое уравновешивание обычно выполняют на специальных оправках. Для корректирования и уравновешивания массы применяют различные приспособления (рис. 111).


Рис. 111. Приспособление для устранения неуравновешенности подвешиванием к детали металлических грузов

Неуравновешенность устраняется подвешиванием к детали металлических грузов. Линейка 1 с передвижным грузом 2 с помощью струбцины 3 прикрепляется к уравновешиваемой детали 4, а противовес 5 закрепляется отдельно. Статическая балансировка может уравновесить деталь только относительно ее оси вращения, но не может устранить действия сил, стремящихся повернуть продольную ось. Это относится к деталям и узлам, имеющим длину больше диаметра (роторы крупных турбин, турбогенераторов, электродвигателей, быстровращающиеся шпиндели станков, коленчатые валы автомобильных и авиационных двигателей и т. д.).

Чтобы выполнить динамическую балансировку длинного вала, применяют специальные балансировочные машины, на которых определяют центробежную силу, величину эксцентриситета, вес груза для уравновешивающей пары моментов. Работу эту выполняют специалисты-балансировщики.

Статическая балансировка (использ. в мелк.сер. и ед.пр-вах) сборочных единиц и деталей состоит в определении величины дисбаланса и его устранение путем перестановки отдельных элементов конструкции, удаления в нужных местах сверлением, шлифованием, растачиванием части металла или, наоборот, добавлением соответствующей его массы сваркой и пр.

Динамическая балансировка применяется для уравновешивания вращающихся сборочных единиц, имеющих большую сравнительно с диаметром длину (напр. шпиндель). При такой балансировке искусственно создается система сил, в которой равнодействующие, а также моменты равны нулю или постоянны по величине и направлению.

Колеблющиеся системы балансировочной машины: 1) с неподвижными опорами (рис А). 2) с фиксированной осью колебания оси балансируемого ротора (рис Б). 3) с фиксированной плоскостью колебания оси ротора (рис Г). 4) без жестких связей оси ротора с окружающей средой (рис Д).

Неуравновешенность механизмов мобильных машин увеличивает их вибрацию, что ухудшает управляемость, отрицательно влияет на прочность и вредно отражается на здоровье обслуживающего персонала.

Балансировку деталей обычно осуще­ствляют в механических цехах при их изготовлении. Однако после сборки сбо­рочных единиц, в которые входят отба­лансированные детали, возникает необхо­димость повторной их проверки, так как смещение одной из деталей, даже в преде­лах зазоров, предусмотренных чертежом, нередко может вызвать значительную неуравновешенность всей сборочной еди­ницы. В связи с этим в технологических процессах сборки многих изделий балан­сировка является обязательной опера­цией.

Балансировка окончательно собранных сборочных единиц на специальных установках или балансировочных станках пред­ставляет собой контрольно-пригоночную операцию, которая не­редко не включается в поток сборки, а выполняется на отдельном участке. Тем не менее балансировочные работы составляют важ­нейшую часть процесса сборки.

Точность уравновешивания, допустимые дисбалансы устанавли­ваются техническими требованиями, исходя из особенностей конструкции и назначения сборочных единиц и деталей, скорости их вращения, допустимых вибраций машины, необходимой на­дежности и долговечности, возможных физиологических ощуще­ний оператора, работающего на машине в условиях эксплуатации, и пр.

Например, статическую несбалансированность дисков ротора турбин назначают из условия, чтобы неуравновешенная сила не превышала 5% веса диска. Точность динамической баланси­ровки собранного ротора часто устанавливают такой, чтобы возмущающая сила на каждом подшипнике не превышала 1-2% массы ротора. В ряде случаев точность балансировки характери­зуют так называемым допускаемым остаточным эксцентриситетом.

Рис. . Схемы статической балансировки

В процессе сборки обычно производят статическую и динами­ческую балансировки сборочных единиц - роторов. Статическую балансировку производят на горизонтальных параллелях, на дисковых роликах, на сферической пяте, на весах и на специальных станках.

Статическая балансировка сборочных единиц и деталей состоит в определении величины дисбаланса и его устранении путем пере­становки отдельных элементов конструкции, удаления в нужных местах сверлением, шлифованием, растачиванием части металла или, наоборот, добавлением соответствующей его массы сваркой, приклепыванием и пр., а также комбинированием этих способов.

При статической балансировке можно обеспечить точность:

на параллелях или пяте - до 0,001 Gk гс*см;

В массовом производстве получают распространение автомати­зированные балансировочные машины, в которых процессы соеди­нения балансируемой детали (сборочной единицы) с приводом, определения неуравновешенности, передача этих результатов запоминающим устройствам, ориентация детали и режущего инструмента и операция устранения дисбаланса производятся автоматически. В некоторых таких автоматах процессы определе­ния неуравновешенности и ее устранения совмещены (однопозиционные автоматы); в двухпозиционных же автоматах эти про­цессы разделены.

В целях проведения динамической балансировки на повышен­ных скоростях и сокращения времени на операцию в настоящее время ведутся опыты по применению кратковременных (менее 1 м-с) импульсов лазера для устранения излишнего металла без остановки уравновешиваемой детали (сборочной единицы).

Как уже отмечалось, неуравновешенность различных враща­ющихся сборочных единиц вызывает при работе вибрацию ма­шины. В быстроходных машинах (например, в автомобилях, тракторах) это явление особенно ощутимо. Повышение точности балансировки деталей и сборочных единиц снижает вибрацию.

Каусов М.А - сотрудник редакции

Надежная и исправная работа вращающихся механизмов зависит от большого числа факторов, таких как: соосность валов агрегата; состояние подшипников, их смазка, посадка на валу и в корпусе; износ корпусов и уплотнений; зазоры в проточной части; выработка сальниковых втулок; радиальный бой и прогиб вала; дисбаланс рабочего колеса и ротора; подвеска трубопроводов; исправность обратных клапанов; состояние рам, фундаментов, анкерных болтов и многое другое. Очень часто упущенный небольшой дефект, как снежный ком тянет за собой другие, а в результате выход оборудования из строя. Только учитывая все факторы, точно своевременно диагностируя их, и соблюдая требования ТУ на ремонт вращающихся механизмов, можно добиться безотказной работы агрегатов, обеспечить заданные рабочие параметры, увеличить межремонтный ресурс, снизить уровень вибрации и шума. Планируется посвятить теме ремонта вращающихся механизмов ряд статей, в которых будут рассмотрены вопросы диагностики, технологии ремонта, модернизации конструкции, требованиям к отремонтированному оборудованию и рационализаторским предложениям по повышению качества и снижению трудоемкости ремонта.

В ремонте насосов, дымососов и вентиляторов трудно переоценить значение точной балансировки механизма. Как удивительно и радостно видеть некогда грохочущую и трясущуюся машину, которую усмирили и успокоили несколько граммов противовеса, заботливо установленные в «нужное место» умелыми руками и светлой головой. Невольно задумываешься о том, что значат граммы металла на радиусе колеса вентилятора и тысячах оборотов в минуту.

Так в чем же причина такой резкой перемены в поведении агрегата?

Попробуем представить себе, что вся масса ротора вместе с рабочим колесом сосредоточена в одной точке - центре масс (центре тяжести), но из-за неточности изготовления и неравномерности плотности материала (особенно для чугунных отливок) эта точка смещена на некоторое расстояние от оси вращения (Рисунок №1). При работе агрегата возникают силы инерции - F, действующие на смещенный центр масс, пропорциональные массе ротора, смещению и квадрату угловой скорости. Они-то и создают переменные нагрузки на опоры R, прогиб ротора и вибрации, приводящие к преждевременному выходу агрегата из строя. Величина равная произведению расстояния от оси до центра масс на массу самого ротора - называется статическим дисбалансом и имеет размерность x см].

Статическая балансировка

Задачей статической балансировки является приведение центра масс ротора на ось вращения путем изменения распределения массы.

Наука о балансировке роторов объемна и разнообразна. Существуют способы статической балансировки, динамической балансировки роторов на станках и в собственных подшипниках. Балансируют самые различные ротора от гироскопов и шлифовальных кругов, до роторов турбин и судовых коленчатых валов. Создано множество приспособлений, станков и приборов с применением новейших разработок в области приборостроения и электроники для балансировки разных агрегатов. Что касается агрегатов, работающих в теплоэнергетике, то нормативной документацией по насосам, дымососам и вентиляторам предъявляются требования по статической балансировке рабочих колес и динамической балансировке роторов. Для рабочих колес применима статическая балансировка, т. к. при превышении диаметром колеса его ширины более чем в пять раз, остальные составляющие (моментная и динамическая) малы, и ими можно пренебречь.

Чтобы сбалансировать колесо нужно решить три задачи:

1) найти то самое «нужное место» - направление, на ко тором расположен центр тяжести;

2) определить, сколько «заветных грамм» противовеса необходимо и на каком радиусе их расположить;

3) уравновесить дисбаланс корректировкой массы рабочего колеса.

Приспособления для статической балансировки

Найти место дисбаланса помогают приспособления для статической балансировки. Их возможно изготовить самостоятельно они просты и недороги. Рассмотрим некоторые конструкции.

Простейшим устройством для статической балансировки являются ножи или призмы (Рисунок №2), установленные строго горизонтально и параллельно. Отклонение от горизонта в плоскостях параллельной и перпендикулярной оси колеса, не должно превышать 0,1 мм на 1 м. Средством проверки может служить уровень «Геологоразведка 0,01» или уровень соответствующей точности. Колесо одевается на оправку, имеющую опорные шлифованные шейки (в качестве оправки, можно использовать вал, заранее проверив его точность). Параметры призм из условий прочности и жесткости для колеса массой 100 кг и диаметром шейки оправки d = 80 мм составят: рабочая длинна L = p X d = 250 мм; ширина около 5 мм; высота 50 - 70 мм.

Шейки оправки и рабочие поверхности призм должны быть шлифованными для снижения трения. Призмы необходимо зафиксировать на жестком основании.

Если дать колесу возможность свободно перекатываться по ножам, то после остановки центр масс колеса займет положение не совпадающее с нижней точкой, из-за трения качения. При вращении колеса в противоположную сторону, после остановки оно займет другое положение. Среднее положение нижней точки соответствует истинному положению центра масс устройства (Рисунок №3) для статической балансировки. Они не требуют точной горизонтальной установки как ножи и на диски (ролики) можно устанавливать ротора с разными диаметрами цапф. Точность определения центра масс меньше из-за дополнительного трения в подшипниках качения роликов.

Применяются устройства для статической балансировки роторов в собственных подшипниках. Для снижения трения в них, которое определяет точность балансировки, применяют вибрацию основания или вращение наружных колец опорных подшипников в разные стороны.

Балансировочные весы.

Самым точным и в то же время сложным устройством статической балансировки являются балансиро вочные весы (Рисунок №4). Конструкция весов для рабочих колес приведена на рисунке. Колесо устанавливают на оправку по оси шарнира, который может качаться в одной плоскости. При повороте колеса вокруг оси, в различных положениях его уравновешивают противовесом, по величине которого находят место и дисбаланс колеса.

Методы балансировки

Величину дисбаланса или количество граммов корректирующей массы определяют следующими способами:

-методом подбора, когда установкой противовеса в точке противоположной центру масс добиваются равновесия колеса в любых положениях;

-методом пробной массы - Мп, которую устанавливают под прямым углом к «тяжелой точке», при этом ротор совершит поворот на угол j. Корректирующую массу вычисляют по формуле Мк = Мп ctg j или определят по номограмме (Рисунок №5): через точку, соответствующую пробной массе на шкале Мп, и точку, соответствующую углу отклонения от вертикали j, проводят прямую, пересечение которой с осью Мк дает величину корректирующей массы.

В качестве пробной массы можно использовать магниты или пластилин.

Метод кругового обхода

Самым подробным и наиболее точным, но и наиболее трудоемким является метод кругового обхода. Он применим и для тяжелых колес, где большое трение мешает точно определить место дисбаланса. Поверхность ротора делят на двенадцать или более равных частей и последовательно в каждой точке подбирают пробную массу Мп, которая приводит ротор в движение. По полученным данным строят диаграмму (Рисунок №6) зависимости Мп от положения ротора. Максимум кривой соответствует «легкому» месту, куда необходимо установить корректирующую массу Мк = (Мп max + Мп min)/2.

Способы устранения дисбаланса

После определения места и величины дисбаланса его необходимо устранить. Для вентиляторов и дымососов дисбаланс компенсируется противовесом, который устанавливается на внешней стороне диска рабочего колеса. Чаще всего для крепления груза используют электросварку. Этот же эффект достигается снятием металла в «тяжелом» месте на рабочих колесах насосов (по требованиям ТУ допускается снятие металла на глубину не более 1 мм в секторе не более 1800). При этом корректировку дисбаланса стараются проводить на максимальном радиусе, т. к. с увеличением расстояния от оси, возрастает влияние массы корректируемого металла на равновесие колеса.

Остаточный дисбаланс

После балансировки рабочего колеса из-за погрешностей измерений и неточности устройств сохраняется смещение центра масс, которое называется остаточным статическим дисбалансом. Для рабочих колес вращающихся механизмов нормативная документация задает допустимый остаточный дисбаланс. Например, для колеса сетевого насоса 1Д1250 - 125 задается остаточный дисбаланс 175 г х см (ТУ 34 - 38 - 20289 - 85) .

Сравнение методов балансировки на различных устройствах

Критерием сравнения точности балансировки может служить удельный остаточный дисбаланс. Он равен отношению остаточного дисбаланса к массе ротора (колеса) и измеряется в [мкм]. Удельные остаточные дисбалансы для различных методов статической и динамической балансировки сведены в таблицу №1.

Из всех устройств статической балансировки, весы дают самый точный результат, однако, это устройство самое сложное. Роликовое устройство, хотя и сложнее параллельных призм в изготовлении, но проще в эксплуатации и дает результат не многим хуже.

Основным недостатком статической балансировки является необходимость получения низкого коэффициента трения при больших нагрузках от веса рабочих колес. Повышение точности и эффективности балансировки насосов, дымососов и вентиляторов можно достичь методами динамической балансировки роторов на
станках и в собственных подшипниках.

Применение статической балансировки

Статическая балансировка рабочих колес эффективное средство снижения вибрации, нагрузки на подшипники и повышения долговечности машины. Но она не панацея от всех бед. В насосах типа «К» можно ограничиться статической балансировкой, а для роторов моноблочных насосов «КМ» требуется динамическая, т. к. там возникает взаимное влияние небалансов колеса и ротора электродвигателя. Необходима динамическая балансировка и для роторов электродвигателей, где масса распределена по длине ротора. Для роторов с двумя и более колесами, имеющих массивную соединительную полумуфту (например СЭ 1250 - 140), колеса и муфта балансируются отдельно, а затем ротор в сборе балансируют динамически. В отдельных случаях длят обеспечения нормальной работы механизма необходима динамическая балансировка всего агрегата в собственных подшипниках.

Точная статическая балансировка - это необходимая , но иногда не достаточная основа надежной и долговечной работы агрегата.

Ротор в целом может иметь неравномерное относительно оси вращения распределение металла по весу и его центр тяжести не будет расположен на этой оси, т.е. по весу ротор будет неуравновешен относительно оси вращения. Такая неуравновешенность ротора или его деталей называется небалансом .

При вращении ротора небаланс вызывает появление радиально направ­ленной возмущающей силы. Эта сила стремится вырвать вал вместе с укреп­ленной на нем деталью из подшипников. Возмущающая сила все время меняет свое направление, оставаясь радиальной, поэтому ее действие на подшипники переменно по направлению; такое действие неизбежно приводит к вибрации механизма.

Детали механизма при вибрации испытывают удары, толчки и перегруз­ку, что вызывает ускоренный общий износ, нарушение центрирования и креп­лений, а это в свою очередь еще более усиливает вибрацию.

Чтобы устранить возмущающую силу, ротор уравновешивают, т.е. устра­няют его небаланс. Операции по устранению небаланса называют балансиров­кой. Балансировать можно каждую деталь ротора в отдельности или весь ротор в целом; последний способ экономичнее и точнее.

Чтобы сбалансировать неуравновешенность ротора, нужно на том же рас­стоянии от оси (там где выявлен небаланс), но в диаметрально противополож­ном направлении наплавить (подвесить) груз необходимой для балансировки массы; после чего ротор окажется сбалансированным и никакой возмущаю­щей силы при его вращении возникать не будет.

Величину и расположение небаланса находят при выполнении различных видов балансировок.

Различают статическую и динамическую балансировки ротора:

1. Статической балансировка называется потому, что для выявления и устранения небаланса не требуется вращения ротора; уравновеши­вания достигают, когда ротор находится в состоянии покоя.

2. Динамическая неуравновешенность наблюдается тогда, когда не­уравновешенные массы ротора дают две возмущающие силы, оди­наковые по величине, но противоположно направленные и распо­ложенные на разных концах. При этом может оказаться, что общий центр тяжести ротора расположен на оси вращения, т.е. статически ротор уравновешен. Такую неуравновешенность можно выявить только при вращении ротора, так как общий центр тяжести ротора расположен на его оси, и только при вращении обе неуравновешен­ные массы образуют пару возмущающих сил переменного направ­ления. Следовательно, статически отбалансированный ротор в не­которых случаях может иметь динамическую неуравновешенность. Операция по выявлению и устранению динамического небаланса называется динамической балансировкой .



Монтаж дымососов

Дымососы (Д) предназначены для отсасывания дымовых газов из топки котла и выброса их под напором через дымовую трубу в атмосферу.

Дымососы бывают центробежного (1) и осевого (2) типа.

1. Для котлов паропроизводительностью 420-640 т/ч применяются дымо­сосы центробежного типа двухстороннего всасывания типа: Д-25х2Ш и Д 21,5x2.

Эти дымососы состоят из следующих основных узлов:

Подшипников

Направляющих аппаратов и их привода

Монтаж дымососа начинают с приемки фундамента и установки на него электродвигателя.

Значительные размеры Д двухстороннего всасывания предопределяют их поставку на монтаж в разобранном виде. Поэтому первоначальной операцией по монтажу является сборка на сборочной площадке опорных конструкций Д (рам) и корпусов улиток с всасывающими карманами.

Монтаж Д начинается с установки опорной рамы, которая крепится к фундаменту при помощи болтов. Рама устанавливается на металлических под­кладках, общая толщина которых может быть до 25-30 мм, при количестве подкладок в одном пакете не более трех.

Подкладки располагаются по обе стороны каждого фундаментного болта и регулируют высотные отметки, отклонение которых от проектных допускает­ся не более + - 6 мм.

На опорную раму устанавливаются подшипники Д, центровка которых производится по струне и отвесам.

После установки корпусов подшипников на фундамент устанавливается корпус Д, затем укладывается его ротор.

Вслед за установкой корпуса Д на его всасывающей стороне монтируют регулирующие шиберы. Предварительно шиберы проходят ревизию, в процессе которой проверяется плавность их открытия и закрытия.

Собранный Д опробуется на холостом ходу; при этом допускаются ради­альное и осевое биения рабочего колеса соответственно не более 3 и 6 мм.

2. В котельных установках паропроизводительностью 950 т/ч и более применяются осевые Д типа ДО - 31,5. Основными преимуществами этих Д (по сравнению с центробежными Д) является их компактность. Двухступенчатый осевой Д состоит из:

Всасывающего кармана

Корпуса

Направляющих аппаратов

Рабочих колес

Диффузора

Ходовой части

Маслонасосной станции с системой маслопроводов

Вентиляции для охлаждения

Всасывающий карман изготавливается их двух половин (верхней и ниж­ней), соединяемых на фланцах. Общая масса всасывающего кармана составля­ет около 7,5 т. Нижняя часть всасывающего кармана устанавливается на двух фундаментных опорах.

Корпус Д выполнен из трех частей, предназначенных для размещения:

i. направляющего аппарата и рабочего колеса I ступени;

ii. направляющего аппарата и рабочего колеса II ступени;

iii. спрямляющего аппарата.

Все части соединяются друг с другом на фланцах болтами.

Ходовая часть состоит из вала, двух подшипников и муфты, соединяю­щей вал Д с электродвигателем.

Подшипники Д - роликового типа, сферические, самоустанавливающие­ся, работающие на жидкой смазке, которая подается маслостанцией через сис­тему масляной смазки)(На два Д устанавливается одна маслостанция. Тепловая защита опорного подшипника, установленного в корпусе диффузора, осущест­вляется при помощи специального вентилятора и теплозвукоизоляционного по­крытия.

Монтаж Д начинают с установки опорных конструкций и приемки фун­дамента. Бетонная поверхность предварительно зачищается от неровностей и насекается в местах расположения фундаментных болтов и подкладок под опорные конструкции Д. Подкладки изготовляются из листовой стали шири­ной 100-200 мм и длиной, соответствующей ширине нижней плоскости опор­ной конструкции. Число подкладок не должно превышать трех в одном месте.

Технологическая последовательность монтажа ____ осевого дымососа ДО - 31,5

Оче­ред­ность Узел Основные работы
I Нижняя часть корпуса Установка на опорные конструкции. Уста­новка шпонок продольного упора. Выверка тепловых зазоров в узлах крепления опор.
Опорно-упорный подшипник Установка и закрепление на фундаментных опорных конструкциях опорно-упорного подшипника и ротора с соблюдением осе­вых зазоров.
Электродвигатель Установка на валы полумуфты. Установка рамы и электродвигателя.
Узлы 1,2,3 Выверка главных осей и высотных отметок нижней части корпуса, ходовой части и электродвигателя.
Ходовая часть Прицентровка нижней части корпуса к ро­тору с соблюдением радиальных зазоров.
Опоры корпуса дымососа Заливка бетоном фундаментных болтов подставок корпуса.
Помосты и лестницы Установка на фундамент привода направ­ляющих аппаратов. Установка помостов и лестниц вокруг электродвигателя и корпуса дымососа.
Снятие ротора дымососа. Установка под-
ставок на фундамент. Смазка опорных по­верхностей подставок смесью солидола с графитом. Установка нижней части всасы­вающего кармана.
Нижняя часть обтекателя (кока) Установка нижней части обтекателя и нижней крышки защитного кожуха опорно­го подшипника. Установка ротора.
Верхняя часть корпуса Установка верхней части корпуса дымососа на асбестовых прокладках в горизонталь­ном разъеме. Установка верхней части об­текателя.
Нижняя часть всасывающего кармана Окончательная установка и крепление к корпусу нижней части всасывающего кар­мана.
Защитные устройства Монтаж защитного кожуха опорного под­шипника и сальникового уплотнения.
Направляющие аппараты Монтаж поворотных колец, рычагов, тяг и привода направляющих аппаратов.
Диффузор Установка трубы диффузора на временной опоре. Последовательный монтаж трех сек­ций диффузора. Установка распорных ре­бер между трубой и конусом диффузора.
Вентилятор охлаждения Монтаж вентилятора охлаждения и возду­хопровода.
Верхняя часть всасывающего кармана Монтаж верхней части всасывающего кар­мана, установка ограждения вала
Валы дымососа и электродвигателя Прицентровка и соединение валов дымосо­са и электродвигателя.