Устройство трансформатора – разновидности конструкции, применение. Принцип работы трансформатора и типы приборов Что называется первичной обмоткой трансформатора

Назначение и виды трансформатора.

Трансформатор представляет собой статическое электромагнитное оборудование, при работе которого происходит преобразование переменного тока с трансформацией напряжения. Т.е. этот аппарат позволяет его понижать или повышать. Установленные на электростанциях трансформаторы осуществляют на длительные расстояния при высоких напряжениях до 1150кВ. А уже непосредственно в местах потребления происходит понижение напряжения, в пределах 127-660В. При таких значениях обычно работают различные электрические потребители, которые устанавливаются на заводах, фабриках и в жилых домах. Электроизмерительные приборы, электросварка и другие элементы в цепи высокого напряжения также требуют использования трансформатора. Они бывают одно- и трехфазные, двух- и многообмоточные.

Существует несколько видов трансформаторов, каждый из которых определен своими функциями и предназначением. Силовой трансформатор преобразует электрическую энергию в сетях, которые предназначены для использования и приема этой энергии. служит измерением больших токов в устройствах электрических систем. Трансформатор напряжения преобразует высокое напряжение в низкое. Автотрансформатор имеет электрическую и электромагнитную связь, за счет прямого соединения первичной и вторичной обмотки. Импульсный трансформатор преобразует импульсные сигналы. отличается тем, что первичная и вторичная обмотки не связаны друг с другом электрически. Вкратце говоря, во всех видах принцип работы трансформатора чем-то схож. Еще можно выделить гидротрансформатор, принцип работы которого заключается в передаче крутящего момента к коробке передач от двигателя автомобиля. Это устройство позволяет бесступенчато изменять частоту вращения и крутящий момент.

Устройство и принцип действия трансформатора.

Принцип работы трансформатора заключается в проявлении электромагнитной индукции. Это устройство состоит из магнитопровода и двух обмоток, которые расположены на нем. К одной подается электроэнергия, а ко второй подключаются потребители. Как уже указывалось выше, эти обмотки называются первичной и вторичной, соответственно. Магнитопровод выполнен из электротехнической элементы которого изолированы лаком. Его часть, на которой располагаются обмотки, называется стержнем. И именно такая конструкция получила большее распространение, т.к. обладает рядом достоинств - простая изоляция обмоток, простота ремонта, хорошие условия охлаждения. Как видно, принцип работы трансформатора не так уж и сложен.

Существуют еще трансформаторы броневой конструкции, которая значительно уменьшает их габариты. Чаще всего это бывают однофазные трансформаторы. В таком оборудовании боковые ярма играют защитную роль обмотки от механических повреждений. Это очень важный фактор, т.к. малогабаритные трансформаторы не имеют кожуха и находятся с остальным оборудованием в общем месте. чаще всего выполняют с тремя стержнями. Бронестержневая конструкция применяется также в трансформаторах большой мощности. Хоть это и увеличивает расходы электроэнергии, но зато позволяет уменьшать высоту магнитопровода.

Различают трансформаторы по способу соединения стержней: стыковые и шихтованные. В стыковых стержни и ярма собираются раздельно и соединяются крепежными частями. А в шихтованных листы собираются внахлест. Шихтованные трансформаторы получили большее применение, т.к. у них намного выше механическая прочность.

Принцип работы трансформатора также зависит от обмотки, которые бывают цилиндрическими, дисковыми и концентрическими. Оборудование большой и средней мощности имеют газовое реле.

Трансформатором называют статическое электромагнитное устройство, имеющее две или большее число индуктивно связанных обмоток и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока.

Трансформаторы широко используют для следующих целей.

    Для передачи и распределения электрической энергии. Обычно на электростанциях генераторы переменного тока вырабатывают электрическую энергию при напряжении 6-24 кВ.

    Для питания различных цепей радио- и телевизионной аппаратуры; устройств связи, автоматики в телемеханики, электробытовых приборов; для разделения электрических цепей различных элементов этих устройств; для согласования напряжений

    Для включения электроизмерительных приборов и некоторых аппаратов, например реле, в электрические цепи высокого напряжения или в цепи, по которым проходят большие токи, с целью расширения пределов измерения и обеспечения электробезопасности. Трансформаторы, применяемые для этой цели, называют измерительными. Они имеют сравнительно небольшую мощность, определяемую мощностью, потребляемой электроизмерительными приборами, реле и др.

Принцип действия трансформатора

Электромагнитная схема однофазного двухобмоточного трансформатора состоит из двух обмоток (рис. 2.1), разме­щенных на замкнутом магнитопроводе, который выполнен из ферромагнитного материала. Применение ферромагнитного магнитопровода позволяет усилить электромагнитную связь между обмотками, т. е. уменьшить магнитное сопротивление контура, по которому проходит магнитный поток машины. Первичную обмотку 1 подключают к источнику переменного тока - электрической сети с напряжением u 1 . Ко вторичной обмотке 2 присоединяют сопротивление нагрузки Z H .

Обмотку более высокого напряжения называют обмоткой высшего напряжения (ВН), а низкого напряжения - обмоткой низшего напряжения (НН). Начала и концы обмотки ВН обозначают буквами А и X; обмотки НН - буквами а и х.

При подключении к сети в первичной обмотке возникает переменный ток i 1 , который создает переменный магнитный поток Ф, замыкающийся по магнитопроводу. Поток Ф индуцирует в обеих обмотках переменные ЭДС - е 1 и е 2 , пропорциональные, согласно закону Максвелла, числам витков w 1 и w 2 соответствующей обмотки и скорости изменения потока d Ф/dt .

Таким образом, мгновенные значения ЭДС, индуцированные в каждой обмотке,

е 1 = - w 1 dФ/dt; е2= -w 2 dФ/dt .

Следовательно, отношение мгновенных и действующих ЭДС в обмотках определяется выражением

Следовательно, подбирая соответствующим образом числа витков обмоток, при заданном напряжении U 1 можно получить желаемое напряжение U 2 . Если необходимо повысить вторичное напряжение, то число витков w 2 берут больше числа w 1 ; такой трансформатор называют повышающим. Если требуется уменьшить напряжение U 2 , то число витков w 2 берут мень­шим w 1 ; такой трансформатор называют понижающим,

Отношение ЭДС Е ВН обмотки высшего напряжения к ЭДС Е НН обмотки низшего напряжения (или отношение их чисел витков) называют коэффициентом трансформации

k = Е ВН /Е НН = w ВН /w НН

Коэффициент k всегда больше единицы.

В системах передачи и распределения энергии в ряде слу­чаев применяют трехобмоточные трансформаторы, а в устрой­ствах радиоэлектроники и автоматики - многообмоточные трансформаторы. В таких трансформаторах на магнитопроводе размещают три или большее число изолированных друг от друга обмоток, что дает возможность при питании одной из обмоток получать два или большее число различных напряжений (U 2 , U 3 , U 4 и т.д.) для электроснабжения двух или большего числа групп потребителей. В трехобмоточных силовых трансформаторах различают обмотки высшего, низшего и среднего (СН) напряжений.

В трансформаторе преобразуются только напряжения и токи. Мощность же остается приблизительно постоянной (она несколько уменьшается из-за внутренних потерь энергии в трансформаторе). Следовательно,

I 1 /I 2 ≈ U 2 /U 1 ≈ w 2 /w 1 .

При увеличении вторичного напряжения трансформатора в k раз по сравнению с первичным, ток i 2 во вторичной обмотке соответственно уменьшается в k раз.

Трансформатор может работать только в цепях переменного тока. Если первичную обмотку трансформатора под­ключить к источнику постоянного тока, то в его магнито-проводе образуется магнитный поток, постоянный во времени по величине и направлению. Поэтому в первичной и вторичной обмотках в установившемся режиме не индуцируются ЭДС, а следовательно, не передается электрическая энергия из первичной цепи во вторичную. Такой режим опасен для трансформатора, так как из-за отсутствия ЭДС E 1 первич­ной обмотке ток I 1 =U 1 R 1 весьма большой.

Важным свойством трансформатора, используемым в устройствах автоматики и радиоэлектроники, является способность его преобразовывать нагрузочное сопротивление. Если к источнику переменного тока подключить сопротивление R через трансформатор с коэффициентом трансформации к, то для цепи источника

R" = P 1 /I 1 2 ≈ P 2 /I 1 2 ≈ I 2 2 R/I 1 2 ≈ k 2 R

где Р 1 - мощность, потребляемая трансформатором от источ­ника переменного тока, Вт; Р 2 = I 2 2 R P 1 - мощность, по­требляемая сопротивлением R от трансформатора.

Таким образом, трансформатор изменяет значение сопро­тивления R в k 2 раз. Это свойство широко используют при разработке различных электрических схем для согласования сопротивлений нагрузки с внутренним сопротивлением источ­ников электрической энергии.

Принцип действия:

  1. В устройстве существуют 2 обмотки , их называют первичной и вторичной. К внешнему источнику подключается только первичная обмотка, тогда как вторичная обмотка предназначена для снятия напряжения.
  2. Включая в электросеть первичную обвивку , в магнитопроводе создаётся магнитное поле (переменное) от первичной обмотки, в результате чего образуется ток вторичной обмотки, если его замкнуть через приёмник.
  3. Синхронно в первичной обвивке образуется нагрузочный ток.
  4. Отсюда происходит трансформирование электрической энергии, когда первичная сеть передаёт её вторичной. В результате, приёмник получит ту величину, на которую рассчитан прибор.

схема работы

Явление взаимной индукции, является основой работы трансформатора:

  1. Чтобы улучшить магнитную связь 2 обмоток, они укладываются на магнитопровод стальной структуры.
  2. В свою очередь , делается изоляция не только между ними, но и с магнитопроводом.
  3. Каждая обмотка имеет свою маркировку. Если обмотка с высоким напряжением, её обозначают (ВН), низким – (НН).
  4. Первичная обмотка подключается к электросети, вторичная – к приёмнику.

Напряжение на обвивках имеют различную величину, и от того в каких целях будет применяться устройство, зависит величина на обвивках:

  1. Повышающий трансформатор будет иметь меньше напряжение на первичной обвивке, чем на второй.
  2. Понижающий прибор , в точности всё наоборот.

Использование их различно:

  1. На больших расстояниях используются повышающие приборы.
  2. Если надо распределить электроэнергию потребителям – понижающие.

Существуют приборы с 3 обмотками, когда надо получить не только высокое и низкое напряжение, но и среднюю величину (СН).

Обвивки такого устройства также изолированы друг от друга и имеют подключение от электроэнергии одной обвивкой, когда 2 другие подсоединяются к разным приёмникам:

  1. Обвивки имеют форму цилиндра и выполняются намоткой медного провода, имеющего круглое сечение для малых токов.
  2. Для тока большой величины используются шины с прямоугольным сечением.
  3. На сердечник магнитопровода делается обвивка для малого напряжения, так как она легко изолируется, по сравнению с обвивкой высокого номинала.
  4. Сам сердечник исполняется круглой формы , если обвивка в форме цилиндра. Это делается для уменьшения немагнитных зазоров, и уменьшить длину витков обвивок. Отсюда уменьшится и масса меди на заданную площадь сечения круглого магнитопровода.
  5. Круглый стержень проходит сложный процесс сборки из стальных листов. И чтобы упростить задачу, в устройствах с большим напряжением используются стержни со ступенчатым поперечным сечением, когда их число достигает всего 17 штук.
  6. В мощных агрегатах устанавливаются дополнительные вентиляционные каналы, для охлаждения магнитопровода. Это достигается расположением их перпендикулярно и параллельно поверхности листов из стали.
  7. В менее мощных устройствах сердечник выполняется с прямоугольным сечением.

Назначение и типы

трехфазный трансформатор

Трансформатор, можно назвать преобразователем одной величины напряжения или тока в другую.

Они могут быть:

  • трёхфазными;
  • однофазными;
  • понижающими;
  • повышающими;
  • измерительными и т.д.;

Назначение прибора: передаёт и распределяет электроэнергию заказчику.

В приборе есть активные компоненты: обвивка и сердечник магнитопоровода. В свою очередь, сердечник может быть стержневым и броневым. Для них используется холоднокатаная горячекатаная электротехническая сталь.

Обвивку используют непрерывную, винтовую, цилиндрическую, дисковую.

Среди современных изделий можно отметить следующие:

  • тороидальные;
  • броневые;
  • стержневые;


Они имеют характеристики похожие друг с другом, с высокой надёжностью. Единственное, что их различает – это способ изготовления.

В стержневом варианте, обвивка наматывается вокруг сердечника, тогда как в броневом типе идёт включение в сердечник. Поэтому, в стержневом типе, обвивку можно увидеть и располагается она только горизонтально, а в броневом, она скрыта, но может быть, как горизонтально, так и вертикально размещена.

Какой бы тип мы не рассматривали, у него имеются 3 компонента:

  • система охлаждения;
  • обвивка;
  • магнитопровод;

За счёт приборов удаётся значительно повысить напряжённость, идущую с электрических станций, на дальние расстояния, при этом, потери энергии будут минимальные по проводам. На основании вышеизложенного, можно использовать провода на линиях передач, с меньшей площадью сечения.

Потребителю также можно уменьшать потребление энергии с высоковольтных линий до номинальных значений (380, 220, 127 В).

Область применения и виды


трансформатор в телевизоре

Бытовые трансформаторы защищают технику при перепадах напряжения.

Поэтому применяют их в следующих приборах:

  • в освещении;
  • осциллографах;
  • телевизорах;
  • радиоприёмниках;
  • измерительных устройствах и т.д;

Сварочные экземпляры, разделяющие силовую и сварочную сеть, активно используются при сварке и электротермических конструкциях, где успешно понижают величину напряжения до обязательных номиналов.

В энергосети используются масляные агрегаты, где напряжённость 6 и 10 кВ.

Многие автоматические конструкции используют трансформаторы, где напряжение на обвивках несуидальное.

Виды:


  1. Вращающийся . Передача сигнала ведётся на объекты, которые вращаются. Например, видеомагнитофон, где передача сигнала ведётся на барабан узла магнитной головки. Здесь существуют 2 половины магнитопровода и вращение их происходит с минимальным зазором в отношении друг друга. На основании этого, реализуется большая скорость оборотов, в контактном способе сигнала достичь такого эффекта не считается возможным.
  2. Пик-трансформатор . В этом варианте происходит преобразование синусоидального напряжения в сплески, имеющие пикообразную форму. Активно используются в управлении тиристоров, а также электронных и полупроводниковых устройств.
  3. Согласующий . Принимает участие в согласовании сопротивлений в разных промежутках электронной схемы, при этом, форма сигнала искажается минимально. Синхронно обеспечивается гальваническая развязка между зонами схем.
  4. Разделительный . Здесь 2 обмотки не соединены между собой электрически. Такая схема даёт возможность повысить безопасность электрических сетей. Когда происходит случайное одновременное прикосновение к токоведущей части и земли, выдаётся гальваническая развязка электрической цепи.
  5. Импульсный . В этом варианте преобразуются импульсные сигналы за очень короткий промежуток времени (десятки микросекунд), при этом, искривление конфигурации импульса минимально.
  6. По напряжению . Здесь происходит конверсия большого напряжения в низкую величину. Этот вариант позволяет изолировать измерительные и логические цепи от большого напряжения.
  7. По току . В этом типе измеряются цепи с большим током. Например, в конструкциях релейных щитов электроэнергетических систем. Поэтому, применяются достаточно жёсткие требования к точности.
  8. Автотрансформатор . В этом типе соединение 2 обмоток ведётся напрямую. В результате, создаётся электрическая и электромагнитная связь, чем объясняется высокий КПД этого вида. Недостатком такого устройства, можно назвать отсутствие изоляции, то есть не существует гальваническая развязка.
  9. Силовой . Этот вариант используется при изменяемом токе и преобразует электрическую энергию в установках и электросетях. Широко применяется этот тип на линиях ЛЭП с высокой напряжённостью (35-750 кВ), городских электрических сетях (10 и 6 кВ).
  10. Сдвоенный дроссель . Наличие 2 равных обвивок, даёт возможность получить более результативный дроссель, чем обычный. Их используют на вводе фильтра в блоке питания, а также в звуковом оборудовании.
  11. Трансфлюксор . Оставшаяся намагниченность магнитного провода имеет большую величину, что позволяет использовать его для сохранения сведений.

Немного из истории


Изобретение трансформаторов начиналось ещё в 1876 году, великим русским учёным П.Н. Яблоковым. Тогда его изделие не имело замкнутого сердечника, который появился значительно позже – 1884 год. И с появлением прибора учёные активно стали интересоваться переменным током.

Например, уже в 1889 году, М.О. Доливо-Добровольским (русским электротехником) была предложена трёхфазная система переменного тока. Им был построен первый 3-х фазный

Уже через пару лет, электромеханик предоставил свои работы на выставке, где произошла презентация трёхфазной высоковольтной линии, имеющую протяженность 175 км, где успешно повышалась и понижалась электроэнергия.

Немного позже, пришла очередь масляным агрегатам, так как масло не только оказалось хорошим изолятором, но и прекрасной охлаждающей средой.

В 20 столетии появились изделия более компактные и экономичные. Производителями продукции являлись иностранные фирмы. На настоящий момент, выпуском продукции занимаются и отечественные фирмы.

Среди общепромышленных, употребляемых для учета продукции и сырья, распространены товарные, автомобильные, вагонные, вагонеточные и др. Технологические служат для взвешивания продукции в ходе производства при технологически непрерывных и периодических процессах. Лабораторные применяют для определения влажности материалов и полуфабрикатов, проведения физикохимического анализа сырья и других целей. Различают технические, образцовые, аналитические и микроаналитнческие .

Можно разделить на ряд типов в зависимости от физических явлений, на которых основан принцип их действия. Наиболее распространены приборы магнитоэлектрической, электромагнитной, электродинамической, ферродинамической и индукционной систем.

Схема прибора магнитоэлектрической системы показана на рис. 1.

Неподвижная часть состоит из магнита 6 и магнитопровода 4 с полюсными наконечниками 11 и 15, между которыми установлен строго центрированный стальной цилиндр 13. В зазоре между цилиндром и полюсными наконечниками, где сосредоточено равномерное радиально направленное , размещается рамка 12 из тонкой изолированной медной проволоки.

Рамка укреплена на двух осях с кернами 10 и 14, упирающихся в подпятники 1 и 8. Противодействующие пружины 9 и 17 служат токоподводами, соединяющими обмотку рамки с электрической схемой и входными зажимами прибора. На оси 4 укреплена стрелка 3 с балансными грузиками 16 и противодействующая пружина 17, соединенная с рычажком корректора 2.

01.04.2019

1.Принцип активной радиолокации.
2.Импульсная РЛС. Принцип работы.
3.Основные временные соотношения работы импульсной РЛС.
4.Виды ориентации РЛС.
5.Формирование развертки на ИКО РЛС.
6.Принцип функционирования индукционного лага.
7.Виды абсолютных лагов. Гидроакустический доплеровский лаг.
8.Регистратор данных рейса. Описание работы.
9.Назначение и принцип работы АИС.
10.Передаваемая и принимаемая информация АИС.
11.Организация радиосвязи в АИС.
12.Состав судовой аппаратуры АИС.
13.Структурная схема судовой АИС.
14.Принцип действия СНС GPS.
15.Сущность дифференциального режима GPS.
16.Источники ошибок в ГНСС.
17.Структурная схема приемника GPS.
18.Понятие об ECDIS.
19.Классификация ЭНК.
20.Назначение и свойства гироскопа.
21.Принцип работы гирокомпаса.
22.Принцип работы магнитного компаса.

Соединение кабелей — технологический процесс получения электрического соединения двух отрезков кабеля с восстановлением в месте соединения всех защитных и изоляционных оболочек кабеля и экранных оплеток.

Перед соединением кабелей измеряют сопротивление изоляции . У неэкранированных кабелей для удобства измерений один вывод мегаомметра поочередно подключают к каждой жиле, а второй — к соединённым между собой остальным жилам. Сопротивление изоляции каждой экранированной жилы измеряют при подключении выводов к жиле и ее экрану. , полученное в результате измерений, должно быть не менее нормированного значения, установленного для данной марки кабеля.

Измерив сопротивление изоляции, переходят к установлению или нумерации жил, или направлений повива, которые указывают стрелками на временно закрепленных бирках (рис. 1).

Закончив подготовительные работы, можно приступать к разделке кабелей. Геометрию разделки соединений концов кабелей видоизменяют в целях обеспечения удобства восстановления изоляции жил и оболочки, а для многожильных кабелей также для получения приемлемых размеров места соединения кабелей.

МЕТОДИЧЕСКОЕ ПОСОБИЕ К ПРАКТИЧЕСКОЙ РАБОТЕ: «ЭКСПЛУАТАЦИЯ СИСТЕМ ОХЛАЖДЕНИЯ СЭУ»

ПО ДИСЦИПЛИНЕ: «ЭКСПЛУАТАЦИЯ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК И БЕЗОПАСНОЕ НЕСЕНИЕ ВАХТЫ В МАШИННОМ ОТДЕЛЕНИИ »

ЭКСПЛУАТАЦИЯ СИСТЕМЫ ОХЛАЖДЕНИЯ

Назначение системы охлаждения:

  • отвод теплоты от ГД;
  • отвод теплоты от вспомогательного оборудования;
  • подвод теплоты к ОУ и другому оборудованию (ГД перед пуском, ВДГ поддержание в "горячем" резерве и т.д.);
  • прием и фильтрация забортной воды;
  • продувание кингстонных ящиков летом от забивания медузами, водорослями, грязью, зимой - ото льда;
  • обеспечение работы ледовых ящиков и др.
Структурно система охлаждения подразделяется на пресной воды и систему охлаждения заборной воды. Системы охлаждения АДГ выполняются автономно.

Рис. 1. Система охлаждения дизелей


1 - охладитель топлива; 2 - маслоохладитель турбонагнетателей; 3 - расширительная цистерна ГД; 4 - водоохладитель ГД; 5 - маслоохладитель ГД; 6 - кингстонный ящик; 7 - фильтры забортной воды; 8 - кингстонный ящик; 9 - приемные фильтры ВДГ; 10 - насосы забортной воды ВДГ; 11 - насос пресной воды ГД; 12 - основной и резервный насосы забортной воды ГД; 13 - маслоохладитель ВДГ; 14 - водоохладитель ВДГ; 15 - ВДГ; 16 - расширительная цистерна ВДГ; 17 - опорный подшипник валопровода; 18 - главный упорный подшипник; 19 - главный двигатель; 20 - охладитель наддувочного воздуха; 21 - вода на охлаждение компрессоров; 22 - заполнение и пополнение системы пресной воды; 23 - подключение системы прогрева ДВС; 1оп - пресная вода; 1оз - забортная вода.

23.03.2019

В процессе эксплуатации его обмотка постепенно выходит из строя, принимая на себя воздействие различных негативных факторов. Восстановить работоспособность двигателя можно перемоткой. Выполнять процедуру нужно при возникновении признаков поломок.

Причины и признаки износа обмотки

Выполняется перемотка обмотки двигателя при возникновении таких «симптомов», как посторонний шум и стук, сопровождаемые нарушением целостности и потерей эластичности изоляции. Происходит подобное по нескольким причинам. Основными среди них являются:
  • воздействие природных явлений, включающих в себя высокую влажность, температурные колебания;
  • попадание машинного масла, пыли и других загрязнений;
  • неправильная эксплуатация силового агрегата;
  • влияние на мотор вибрационных нагрузок.
Частой причиной износа, растяжения, потери целостности выступают температурные моменты. При перегреве возникает излишнее перенапряжение, делает которое обмотку чувствительной к внешним воздействиям. Малейшие удары и вибрации приводят к поломкам.

Также распространённой причиной выхода из строя обмоток электродвигателей является поломка подшипников, которые из-за перегрузок или в силу временного износа могут разлетаться на маленькие кусочки, что приводит к сгоранию обмоток.

Простейший представляет собой устройство, состоящее из стального сердечника и двух обмоток (рис. 1). При подаче в первичную обмотку переменного напряжения, во вторичной обмотке индуцируется ЭДС той же частоты. Если ко вторичной обмотке подключить некоторый электроприемник, то в ней возникает электрический ток и на вторичных зажимах трансформатора устанавливается напряжение, которое несколько меньше, чем ЭДС и в некоторой относительно малой степени зависит от нагрузки. Отношение первичного напряжения ко вторичному (коэффициент трансформации) приблизительно равно отношению чисел витков первичной и вторичной обмоток.

Рис. 1. Принцип устройства однофазного двухобмоточного трансформатора. 1 первичная обмотка, 2 вторичная обмотка, 3 сердечник. U1 первичное напряжение, U2 вторичное напряжение, I1 первичный ток, I2 вторичный ток, Ф магнитный поток

Простейшие условные обозначения трансформаторов изображены на рис. 2; для наглядности разные обмотки трансформатора можно, как и на рисунке, представить разными цветами.

Рис. 2. Условное обозначение трансформатора в подробных (многолинейных) схемах (a) и в схемах электрических сетей (b)

Трансформаторы могут быть одно- или многофазными, а вторичных обмоток может быть больше одной. В электрических сетях обычно используются трехфазные трансформаторы с одной или двумя вторичными обмотками. Если первичное и вторичное напряжения относительно близки друг другу, то могут использоваться и однообмоточные автотрансформаторы, принципиальные схемы которых представлены на рис. 3.

Рис. 3. Принципиальные схемы понижающего (a) и повышающего (b) автотрансформаторов

Важнейшими номинальными показателями трансформатора являются его номинальные первичное и вторичное напряжения, номинальные первичный и вторичный ток, а также номинальная вторичная полная мощность (номинальная мощность). Трансформаторы могут изготовляться как на весьма малую мощность (например, для микроэлектронных цепей), так и на очень большую (например, для мощных энергосистем), охватывая диапазон мощностей от 0,1 mVA до 1000 MVA.

Потери энергии в трансформаторе – обусловленные активным сопротивлением обмоток потери в меди и вызванные вихревыми токами и гистерезисом в сердечнике потери в стали – обычно настолько малы, что кпд трансформатора, как правило, выше 99 %. Несмотря на это, тепловыделение в мощных трансформаторах может оказаться настолько сильным, что необходимо прибегать к эффективным способам теплоотвода. Чаще всего активная часть трансформатора размещается в баке, заполненном минеральным (трасформаторным) маслом, который, при необходимости снабжается принудительным воздушным или водяным охлаждением. При мощности до 10 MVA (иногда и выше) могут применяться и сухие трансформаторы, обмотки которых обычно залиты с эпоксидной смолой. Основные преимущества сухих трансформаторов заключаются в более высокой огнебезопасности и в исключении течи трансформаторного масла, благодаря чему они могут без препятствий устанавливаться в любых частях зданий, в том числе на любом этаже. Для измерения переменных тока или напряжения (особенно в случае больших токов и высоких напряжений) часто используются измерительные трансформаторы.

Устройство трансформатора напряжения по своему принципу не отличается от силовых трансформаторов, но работает он в режиме, близком к холостому ходу; коэффициент трансформации в таком случае достаточно постоянен. Номинальное вторичное напряжение таких трансформаторов обычно равно 100 V. Вторичная обмотка трансформатора тока в идеальном случае короткозамкнута и вторичный ток в таком случае пропорционален первичному. Номинальный вторичный ток обычно составляет 5 A, но иногда может быть и меньше (например, 1 A). Примеры условных обозначений трансформаторов тока приведены на рис. 4.

Рис. 4. Условное обозначение трансформатора тока в развернутых схемах (a) и в однолинейных схемах (b)

Первым может считаться изготовленное Майклом Фарадеем (Michael Faraday) индукционное кольцо (англ. induction ring), состоящее из кольцевого стального сердечника и двух обмоток, при помощи которого он 29 августа 1831 года открыл явление электромагнитной индукции (рис. 5). Во время быстрого переходного процесса, возникающего при включении или отключении первичной обмотки, соединенной с источником постоянного тока, во вторичной обмотке индуцируется импульсная ЭДС. Такое устройство может поэтому называться импульсным или транзиентным трансформатором.

Рис. 5. Принцип устройства транзиентного трансформатора Майкла Фарадея. i1 первичный ток, i2 вторичный ток, t время

Исходя из открытия Фарадея, учитель физики колледжа города Маргнута (Margnooth) около Дублина (Dublin, Ирландия) Николас Келлан (Nicholas Callan, 1799–1864) построил в 1836 году индукционную катушку (искровой индуктор), состоящий из прерывателя и трансформатора; это устройство позволяло преобразовать постоянный ток в переменный ток высокого напряжения и вызывать длинные искровые разряды. Индукционные катушки стали быстро усовершенствоваться и в 19-м веке широко применялись при исследовании электрических разрядов. К ним могут быть отнесены и катушки зажигания современных автомобилей. Первый трансформатор переменного тока запатентовал в 1876 году живший в Париже русский электротехник Павел Яблочков, использовав его в цепях питания своих дуговых ламп. Сердечник трансформатора Яблочкова представлял собой прямой пучок стальных проволок, вследствие чего магнитная цепь была не замкнутой, как у Фарадея, а открытой, и в других установках такой трансформатор применять не стали. В 1885 году инженеры-электрики Будапештского завода Ганц и Компания (Ganz & Co.) Макс Дери (Max Deri, 172 1854–1938), Отто Титуш Блати (Otto Titus Blathy, 1860–1939) и Кароль Зиперновски (Karoly Zipernovsky, 1853–1942) изготовили трансформатор с тороидальным проволочным сердечником и заодно разработали систему распределения электроэнергии на переменном токе, основанную на применении этих трансформаторов. Трансформатор с еще лучшими свойствами, сердечник которого собирался из Е- и I-образных стальных листов, создал в том же году американский электротехник Уильям Стенли (William Stanley, 1858–1916), после чего началось быстрое развитие систем переменного тока как в Европе, так и в Америке. Первый трехфазный трансформатор построил в 1889 году Михаил Доливо-Добровольский.