Соединение двигателя с валом. Муфтовые соединения. Механические сцепные муфты

При выполнении рабочего чертежа зубчатых колес встречаются различные формы посадочного отверстия в ступице колеса. Это зависит от вида соединения колеса с валом.

9.4.1. Соединение шпоночное

Основные элементы этого соединения изображены на рис. 9.7. При этом шпонка примерно на половину высоты входит в паз (канавку) вала и на половину в паз ступицы колеса. Боковые рабочие грани шпонки передают вращение от вала к колесу и обратно.

Рис. 9.6. Чертеж цилиндрического зубчатого колеса

Таблица 9.2

Размеры элементов шпоночных соединений

Диаметр вала

Размеры сечения шпонок

Глубина паза

Диаметр вала

Размеры сечения шпонок

Глубина паза

t 1

t 1

Рис. 9.8. Элементы шпоночного соединения: а) шпоночная канавка на ступице;

б) шпоночная канавка на валу; в) шпоночное соединение вала и ступицы

9.4.2. Соединение шлицевое

Шлицевое соединение ступицы колеса с валом осуществляется посредством нескольких выступов (шлицев), выполненных как одно целое с валом, и соответствующих им пазов, прорезанных в ступице (рис. 9.9).

Изготовляют шлицевые соединения различных профилей: прямобочного, трапецеидального, эвольвентного и треугольного. Прямобочный профиль наиболее распространен.

Правила выполнения на рабочих чертежах условных изображений шлицевых валов и ступиц колес установлены ГОСТ 2.409-74. Пример изображения приведен на рис. 9.10.

Рис. 9.10. Условные изображения элементов шлицевых вала и ступицы

Условное обозначение шлицев отверстия или вала указывают на полке линии-выноски или в технических требованиях. Пример условного обозначения для ступицы: 8 х 42 х 48 , где Z = 8 – число зубьев; d = 42 – внутренний диаметр; D = 48 – наружный диаметр. Ширина зуба “b ” проставляется на изображении.

4.2.1 Чтение сборочного чертежа. Прочитать сборочный чертеж означает определить устройство, принцип работы, назначение изображенного на нем изделия, представить взаимодействие деталей, их форму и способы соединения между собой. Последовательность чтения сборочного чертежа: − ознакомление с изделием. По основной надписи определить наименование изделия, обозначение чертежа, масштаб изображения, массу сборочной единицы; − чтение изображения. Определить главный вид, дополнительные и местные виды, разрезы и сечения, назначение каждого из них; − изучение составных частей изделия. Определить по спецификации количество и наименование входящих в сборочную единицу деталей, а по чертежу определить их форму, взаимное расположение и назначение. Изображение детали найти сначала на том виде, на котором указан номер позиции, а затем на остальных. При этом необходимо помнить, что одна и та же деталь на любом разрезе (сечении) штрихуется в одну и ту же сторону с одинаковым шагом; − изучение функционального назначения изделия и его конструктивного решения. Установить способ соединения отдельных деталей между собой, взаимодействие составных частей в процессе работы, внешнюю взаимосвязь с другими сборочными единицами и изделиями. Для разъемных соединений выявить все крепежные детали. Определить сопрягаемые поверхности и размеры, по которым осуществляется сопряжение деталей; − изучение конструкции изделия. Установить характер соединения деталей, их функциональное взаимодействие в процессе работы, соединение и взаимодействие с другими сборочными единицами. Для подвижных деталей установить процесс их перемещения при работе механизма, определить трущиеся поверхности и способы осуществления смазки; − определение порядка сборки и разборки изделия – завершающая стадия чтения чертежа.

Последовательность и основные приемы чтения чертежей

Прочитать сборочный чертеж - это значит представить форму и конструкцию изделия, понять его назначение, принцип работы, порядок сборки, а также выявить форму каждой детали в данной сборочной единице. При чтении чертежа общего вида следует: 1. Выяснить назначение и принцип работы изделия. Необходимые сведения о назначении и принципе работы изделия содержатся в основной надписи и описании изделия. 2. Определить состав изделия. Основным документом для определения состава изделия является спецификация, в которой составные части изделия классифицированы по разделам. Для определения на чертеже положения конкретной составной части изделия нужно по ее наименованию определить номер позиции в спецификации, а затем найти на чертеже соответствующую линию-выноску. Спецификация также позволяет определить количество изделий каждого наименования. 3. Определить назначение и конфигурацию составных частей изделия. Назначение и конфигурация изделия определяется функциональными особенностями изделия в целом и его составных частей. Конфигурация составных частей обусловлена их назначением и взаимодействием в процессе работы. При определении конфигурации составных частей следует обращать внимание на способ их соединения. 4. Выявить способы соединения составных частей изделия между собой. Способы соединения деталей обусловлены особенностями взаимодействия элементов изделия в процессе его эксплуатации. Способы соединения могут быть выявлены по чертежу общего вида и классифицированы как разъемные или неразъемные. 5. Определить последовательность сборки и разборки изделия. Одним из основных требований к конструкции изделия является возможность его сборки и разборки в процессе эксплуатации и ремонта. Рациональной может считаться лишь такая конструкция, которая позволяет осуществлять сборку (разборку) с использованием минимального числа операций. Рекомендуется следующая последовательность чтения чертежа: 1. По основной надписи установить наименование изделия, номер, масштаб чертежа, масса изделия, организацию, выпустившую чертеж. 2. Выяснить содержание и особенности чертежа (определить все изображения, составляющие чертеж). 3. По спецификации установить наименование каждой части изделия, найти ее изображение на всех изображениях, уяснить ее геометрические формы. Поскольку на чертежах, как правило, имеется не одно, а несколько изображений, форму каждой детали можно выявить однозначно, прочитав все изображения, на которых данная деталь имеется. Начинать следует с наиболее простых по форме деталей (стержни, кольца, втулки и т.п.). Найдя с помощью позиционного обозначения деталь на одном (обычно на главном) изображении и, зная конструктивное назначение детали, представить себе ее геометрическую форму. Если это одно изображение однозначно определяет форму и размеры детали, то перейти поочередно к выявлению форм других деталей; если же одно изображение не выявляет форму или размеры хотя бы одного элемента детали, то следует отыскать эту деталь на других изображениях сборочного чертежа и восполнить недостаточность одного изображения. Выяснению формы детали способствует то, что на всех разрезах и сечениях одна и та же деталь заштрихована с одинаковым наклоном и расстоянием между линиями штриховки. При этом пользуются знаниями основ проекционного черчения (проекционная связь точек, линий и поверхностей) и условностей, установленных стандартами ЕСКД. 4. Ознакомиться с описанием изделия. Если описание отсутствует следует, по возможности, ознакомиться с описанием аналогичной конструкции. 5. Установить характер соединения составных частей изделия между собой. Для неразъемных соединений определить каждый элемент соединения. Для разъемных соединений выявить все крепежные детали, входящие в соединение. Для подвижных деталей установить возможность их перемещения в процессе работы механизма. 6. Установить, какие детали смазываются, и как осуществляется смазка. 7. Выяснить порядок сборки и разборки изделия. При этом следует иметь в виду, что в спецификации и на сборочном чертеже порядок записи и обозначения составных частей не связаны с последовательностью сборки. Рекомендуется фиксировать порядок сборки и разборки изделия на бумаге в виде схемы или в форме записи последовательности операций. Конечной целью чтения чертежа, как правило, является выяснение устройства изделия, принципа работы и установление его назначения. В учебном процессе центральное место в чтении чертежа занимает изучение форм отдельных деталей, как главного средства к выяснению всех других вопросов, связанных с чтением чертежа.

Деталирование чертежа

Деталированием называется выполнение рабочих чертежей детали по чертежу общего вида. Деталирование – это не простое копирование изображения деталей, а сложная творческая работа, включающая индивидуальную оценку сложности форм каждой детали и принятие наилучшего для нее графического решения: выбор главного изображения, количества и содержания изображений. Размеры деталей измеряют на чертеже с учетом масштаба, указанного основной надписи. Исключение составляют размеры, нанесенные на сборочном чертеже. Размеры стандартных элементов (резьб, конусностей, «под ключ» и др.) уточняются по соответствующим стандартам. Процесс деталирования целесообразно разделить на три этапа: чтение чертежа общего вида, подробное выявление геометрических форм деталей и выполнение рабочих чертежей деталей. 1. Чтение чертежа общего вида. Результатом чтения чертежа общего вида должно быть уяснение состава деталей, входящих в сборку, их взаимного расположения и способов соединения, взаимодействия, конструктивного назначения каждой детали в отдельности и изделия в целом. 2. Подробное выявление геометрических форм деталей , подлежащих вычерчиванию, с целью правильного выбора главного изображения, количества и содержания других изображений на рабочих чертежах. По мере выявления форм деталей следует решать вопрос о выборе главного изображения и необходимости выполнения других изображений для каждой детали, выбрать масштаб изображения, формат. 3. Выполнение рабочих чертежей деталей. произвести компоновку чертежа, т.е. наметить размещение всех изображений детали на выбранном формате. в тонких линиях вычертить необходимые виды, разрезы, сечения и выносные элементы. провести выносные и размерные линии. Определить истинные размеры элементов детали и проставить их на чертеже. Особое внимание обратить на то, чтобы размеры сопряженных деталей не имели расхождений. Определить необходимые конструктивные и технологические элементы (фаски, проточки, уклоны и пр.), которые на чертежах общего вида не изображаются. Размеры выявленных конструктивных элементов определять не по чертежу общего вида, а по соответствующим стандартам на эти элементы. проставить шероховатость, исходя из технологии изготовления детали или ее назначения. обвести чертеж и выполнить штриховку разрезов и сечений. проверить чертеж и, если необходимо, внести исправления. заполнить основную надпись, записать технические требования.


Короткий путь http://bibt.ru

Муфты для соединение двух валов. Глухая муфта.

Муфта сцепления. Кулачковая муфта. Фрикционная муфта. Крестовая кулачково-дисковая муфта (муфта «Ольдтема»).

Соединение двух валов может быть глухим , когда длинный вал по условиям изготовления и эксплуатации машины делают составным, причем составной вал должен работать как целый. Такое соединение показано на рис. 234. Это - втулка, насаженная с натягом на концы соединяемых валов. Втулка закрепляется на валах и передает крутящий момент при помощи призматических или сегментных шпонок или конических штифтов.

Рис. 234 : 1 - муфта, 2 - шпонка, 3 - вал

Муфты сцепления предназначены для соединения и разъединения валов. К ним относятся кулачковые и фрикционные муфты.

Кулачковая муфта (рис. 235) состоит из двух частей, насаженных на соединяемые концы валов. Одна полумуфта насаживается наглухо, вторая может перемещаться вдоль вала по направляющей шпонке при помощи специального рычага. При перемещении кулачки сцепляются, чем обеспечивается передача крутящего момента.

Рис. 235. Кулачковая муфта сцепления

Фрикционные муфты (рис. 236) обеспечивают более плавный пуск (за счет пробуксовывания) ведомого вала. Момент передается за счет силы трения между ведущей и ведомой частями муфты. Фрикционные муфты делятся на дисковые, конические, барабанные (с колодками, разжимаемыми кольцами, обтяжными лентами или пружинами).

Рис. 236 Фрикционная муфта

К разновидности подвижных муфт относятся упругие муфты . Эти муфты применяются для компенсации ошибок относительного положения соединяемых валов: смещения центров, взаимного наклона осей, осевого смещения. Возможность компенсации того или иного вида ошибок зависит от конструкции муфт. Например, кулачковая расширительная муфта компенсирует только осевое перемещение, происходящее, например, как результат тепловой деформации.

Для компенсации смещения осей валов в направлении, перпендикулярном к оси, а также небольших осевых смещений применяют крестовую муфту (муфту «Ольдгема») (рис. 237). Она состоит из двух полумуфт с пазом на торцовой поверхности и среднего диска с двумя взаимно перпендикулярными выступами, входящими в пазы полумуфт. При вращении соединенных муфтой валов, оси которых смещены, но параллельны, выступы среднего диска скользят по впадинам полумуфт. Средний диск, кроме вращения, совершает движение в плоскости, перпендикулярной к оси («плавает»).

Общие сведения. Муфтами приводов называют устройства, соединяющие валы совместно работающих агрегатов и передающие вращающий момент. Потребность в соединении валов связано с тем, что большинство машин компонуют из ряда отдельных частей с входными и выходными валами. Такими частями являются двигатель М , редуктор Р и рабочая машина РМ (рис. 23.1).

Основное назначение муфт – соединение валов и передача вращающего момента. Муфты могут выполнять еще ряд важных дополнительных функций. По этому признаку и классифицируют муфты.

Существует класс постоянных (нерасцепляемых) муфт, обеспечивающих постоянное, в течение всего времени эксплуатации машины, соединение валов.

В некоторых машинах применяют муфты сцепления, обеспечивающие соединение агрегатов или их разъединение во время работы машины. В свою очередь муфты сцепления подразделяют на управляемые и самоуправляемые .

Управляемые муфты соединяют агрегаты машин по некоторой команде. Самоуправляемые муфты включаются автоматически, соединяя или разъединяя валы в зависимости от условий режима работы машины и принципа действия муфты.

Основной характеристикой нагрузки муфты является вращающий момент Т .

Обычно расчетный вращающий момент Т на муфте приближенно определяют в зависимости от динамических свойств машины, характеризуемых степенью неравномерности вращения и величиной разгоняемых масс, т.е. величиной динамической составляющей вращающего момента на муфте:

Т = Т н + Т д = Т н (1+Т д / Т н) = Т н,

где Т н – номинальный момент обычно приближенно определяют по потребляемой мощности двигателя и по частоте вращения;

Т д – динамический момент;

Коэффициент динамичности.

Глухие муфты. Длинные валы по условиям изготовления, сборки и транспортировки иногда делают составными. В этом случае отдельные части вала соединяют глухими муфтами. В некоторых случаях эти муфты применяют и для соединения строго соосных валов агрегатов. К глухим муфтам относятся втулочные муфты, представляющие собой втулку, надеваемую с зазором на концы валов, и фланцевые муфты (рис. 23.2), состоящие из двух одинаковых полумуфт, выполненных в виде ступицы с фланцем. Фланцы между собой соединяют болтами.

Компенсирующие муфты. По экономическим и технологическим соображениям машины обычно выполняют из отдельных агрегатов, которые соединяют муфтами. Однако точная установка валов таких агрегатов невозможна из-за ошибок изготовления и монтажа; установки агрегатов на деформируемом основании; а также из-за упругих деформаций валов под нагрузкой.

Возможные виды смещений валов (осевое , радиальное и угловое ) и возникающие вследствие этого дополнительные нагрузки на концах валов представлены на рис. 23.3.

Для соединения валов с несовпадающими осями применяют компенсирующие муфты. Благодаря своей конструкции эти муфты обеспечивают работоспособность машины даже при взаимных смещениях валов. Валы и опоры при этом дополнительно нагружаются осевыми , радиальными силами и изгибающими моментами , зависящими от величины и вида несоосности валов.

Следует подчеркнуть, что с ростом смещений валов работоспособность муфты уменьшается.

К компенсирующим муфтам относятся зубчатые (рис. 23.4), цепные кулачково-дисковые и др. муфты.

Зубчатая муфта состоит из двух втулок 1 и 4 с внешними зубьями и двух обойм 2 и 3 с внутренними зубьями. Обоймы жестко соединены с помощью болтов.

Упругие соединительные муфты. Упругие муфты отличаются наличием упругого элемента и являются универсальными в том смысле, что, обладая некоторой крутильной податливостью, эти муфты также являются компенсирующими.Упругие муфты способны:

1) Смягчать толчки и удары вращающего момента, вызванные технологическим процессом или выбором зазора при пусках и остановках машины. При этом кинетическая энергия удара аккумулируется муфтой во время деформации упругого элемента, превращаясь в потенциальную энергию деформации;

2) Защищать привод машины от вредных крутильных колебаний;

3) Соединять валы, имеющие взаимные смещения. В этом случае деформируется упругий элемент муфты, и муфта функционирует как компенсирующая.

По материалу упругих элементов эти муфты подразделяются на муфты с неметаллическими упругими элементами и муфты с металлическими упругими элементами.

Наибольшее применение в машиностроении получила упругая втулочно-пальцевая муфта (рис. 23.5). Она состоит из двух полумуфт 1 и 5. В полумуфте 1 имеются конические отверстия, а в полумуфте 5 – цилиндрические. В эти отверстия вставляются пальцы 4, на которые надеваются упругие элементы 3. Завинчивания гайки 2, пальцы 4 входят в конические отверстия, в результате чего происходит соединения полумуфт 1 и 5. Вращающий момент передается через упругие элементы 3.

Муфты сцепные управляемые. Сцепные муфты соединяют и разъединяют неподвижные или вращающиеся валы по управляющей команде. Эти муфты делят на муфты с профильным замыканием (кулачковые) и на фрикционные. Последние широко используют при необходимости изменения режима работы машины без остановки двигателя.

Сцепные кулачковые муфты применяются для передачи больших вращающих моментов при нечастых включениях. Они имеют значительно меньшие габаритные размеры и массу, чем фрикционные муфты сцепления. Однако они соединяют валы, угловые скорости которых равны или незначительно различаются. При этом требуется точная соосность соединения полумуфт.

б

На рис. 23.6 изображены сцепные муфты с торцевыми конусными кулачками (рис. 23.6,а) и с прямоугольными (рис. 23.6,б). Выбор формы кулачков определяется в основном условиями включения муфты.

Муфты сцепные фрикционные. Эти муфты допускают включение на ходу и передают вращающий момент за счет сил трения на рабочих поверхностях, создаваемых плавным прижатием рабочих поверхностей. Меняя силу прижатия, можно регулировать момент сил трения. За время включения фрикционной муфты рабочие поверхности проскальзывают. После завершения включения муфты скольжение отсутствует.

Конструкция этих муфт может быть выполнена с одним или несколькими дисками, с цилиндрическими или коническими поверхностями трения, с механическим, пневматическим, гидравлическим или электромагнитным управлением. Группу муфт с силовым замыканием электромеханической связью составляют муфты с жидкой или порошкообразной ферромагнитной смесью, в которых при прохождении электрического тока в катушке возбуждения возникает магнитный поток, в результате ферромагнитная смесь, заполняющая зазор между полумуфтами, намагничивается, что обеспечивает сцепление смеси с поверхностями полумуфт.

На рабочие поверхности дисков наносят фрикционный слой или крепят накладки из фрикционного материала, повышающего силу трения.

В зависимости от условий эксплуатации, фрикционные муфты разделяют: на муфты без смазывания трущихся поверхностей и на муфты со смазыванием трущихся поверхностей. Последние передают меньший вращающий момент, однако они более долговечны, так как интенсивность изнашивания рабочих поверхностей меньше, чем у сухих муфт.

Самоуправляемыеили автоматические муфты включаются и выключаются в зависимости от изменения режима работы машины. К ним относятся: обгонные муфты или муфта свободного хода, передающие момент только при одном направлении вращения ведущей полумуфты относительно ведомой и проворачивающиеся при обратном направлении вращения, центробежные муфты, включающиеся и выключающиеся в зависимости от скорости вращения ведущей полумуфты, муфты предельного момента, отключающие машину при опасном увеличении вращающего момента.

Предохранительные муфты. Предохранительная муфта служит разъединения валов или вала с сидящей на нём деталью при перегрузке или недопустимой скорости вращения, т. е. предохраняющая машину от поломки в случае нарушения нормального режима работы. Муфты предохранительные с разрушающимся элементом отличаются малыми габаритами и высокой точностью срабатывания. При перегрузке предохранительный элемент срезается, и полумуфты размыкаются. Для восстановления работоспособности машины, ее необходимо остановить и заменить предохранительный элемент.

Кулачковые предохранительные муфты удерживаются во включенном состоянии пружинами, до тех пор, пока возрастающий момент не создаёт силы, способной преодолеть усилие пружины.

Фрикционные предохранительные муфты автоматически восстанавливают работоспособность машины после прекращения действия перегрузки, однако, точность срабатывания их не высока из-за непостоянства коэффициента трения на трущихся поверхностях дисков.

Литература

1. Прикладная механика: Учеб. пособие / А.Т. Скойбеда, А.А. Миклашевич, Е.Н. Левковский и др.; Под общ. ред. А.Т. Скойбеды.- Мн.: Выш. шк., 1997. – 552 с.

2. Феодосьев В.И. Сопротивление материалов.- М.: Машиностроение,1979.-560 с.

3. Любощиц М.И., Ицкович Г.М. Справочник по сопротивлению материалов.- Мн.: Выш. шк., 1969.- 464 с.

4. Аркуша А.И. Техническая механика: Теоретическая механика и сопротивление материалов: Учеб. для машиностр. спец. Техникумов.- 2-е изд., доп. – М.: Высш. шк., 1989. – 352 с.


Похожая информация.


Глухие муфты. Длинные валы по условиям изготовления, сборки и транспортировки иногда делают составными. В этом случае отдельные части вала соединяют глухими муфтами. В некоторых случаях эти муфты применяют для обеспечения соосности валов агрегатов.

Втулочная муфта (рис.10.1) представляет собой втулку, надеваемую с зазором на концы валов. Муфта отличается малыми габаритами по диаметру, но усложняет монтаж из-за необходимости больших осевых смещений соединяемых агрегатов. Материал втулок – конструкционная сталь (ст.5, ст.3). Втулочные муфты применяют для соединения валов диаметром до 70 мм.

Фланцевые муфты. Фланцевая муфта (рис.10.2) состоит из двух одинаковых полумуфт, выполненных в виде ступицы с фланцем. Фланцы соединяют болтами. Различают два конструктивных исполнения:

1. Половину болтов устанавливают во фланцах полумуфт без зазора. В этом случае центрирование полумуфт осуществляют эти болты. В результате завинчивания гаек фланцы прижимаются силами затяжки болтов, и на торцах фланцев возникает момент сил трения. Вращающий момент с одной полумуфты на другую передается стержнями болтов, поставленных без зазора, и силами трения на фланцах.

2. Все болты во фланцах полумуфт устанавливают с зазором. При этом не-

обходимо предусмотреть центрирование полумуфт. В этом случае весь вращающий момент с одной полумуфты на другую передается силами трения на фланцах.

Компенсирующие муфты.

По экономическим и технологическим соображениям машины обычно выполняют из отдельных узлов (агрегатов), которые соединяют муфтами. Однако точная установка валов таких агрегатов невозможна из-за: ошибок изготовления и монтажа; установки агрегатов на деформируемом (нежестком) основании; расцентровки валов в результате тепловых деформаций корпусов агрегатов при их работе, а также из-за упругих деформаций валов под нагрузкой.

Для соединения валов с несовпадающими осями применяют компенсирующие муфты. Благодаря своей конструкции эти муфты обеспечивают работоспособность машины даже при взаимных смещениях валов.

Зубчатые муфты. Сдвоенная зубчатая муфта (рис.10.3) состоит из двух одинаковых ступиц 1 (втулок), имеющих внешние зубчатые венцы и двух одинаковых обоим 2 с внутренними зубчатыми венцами. Обоймы стянуты болтами 3, равномерно расположенными по окружности. В крышках 4, закрывающих внутреннюю полость муфты, расположены специальные резиновые уплотнения, удерживающие жидкую смазку внутри муфты. Пробка 5 служит для заливки в муфту масла. Пояски 6 на втулках служат для контроля соосности валов, а резьбовые отверстия – для крепления стоек индикатора. Число зубьев и их размеры подобраны так, чтобы зубья венца втулки располагались с некоторым зазором между зубьями обоймы, образуя зубчатые соединения.

Для снижения интенсивности износа зубьев, заготовки втулок и обойм делают коваными или литыми (при больших размерах). Кованые заготовки делают из сталей марок 35ХМ, 40, 45, а литые из сталей марок 40Л, 45Л. Твердость поверхностей зубьев втулок и обойм должна быть 42 – 50 HRC э.

Шарнирные муфты. В шарнирных муфтах использован принцип действия шарнира Гука. Эти муфты служат для передачи вращающего момента между валами с большими углами перекоса до 40-45° , изменяющимися во время работы.

Муфта (рис. 10.4) состоит из двух одинаковых полумуфт в виде ступицы с вилкой (вилки полумуфт повернуты на 90°) и крестовины, соединяющей полумуфты. Крестовина соединена с вилками полумуфт шарнирами. Это обеспечивает свободу поворота каждой полумуфты относительно крестовины.

Упругие муфты.

Упругие муфты отличаются наличием упругого элемента и являются универсальными в том смысле, что, обладая некоторой крутильной податливостью, эти муфты также являются компенсирующими.

Упругие муфты способны:

· смягчать толчки и удары вращающего момента, вызванные технологическим процессом или выбором зазора при пусках и остановках машины. При этом кинетическая энергия удара аккумулируется муфтой во время деформации упругого элемента, превращаясь в потенциальную энергию деформации.

· защищать привод машины от вредных крутильных колебаний;

· соединять валы, имеющие взаимные смещения. В этом случае деформи-

руется упругий элемент муфты, и муфта функционирует как компенсирущая.

Муфты с неметаллическими (резиновыми) упругими элементами. Уп-

ругие муфты с резино-кордными и резиновыми упругими элементами получи-

ли весьма широкое распространение благодаря простоте конструкций, дешевизне изготовления, простоте эксплуатации (не требуют ухода), высокой податливости при кручении и хорошей демпфирующей способности. Два последних важных свойства определяются свойствами резины, из которой изготовлен упругий элемент муфты.

Упругая втулочно-пальцевая муфта показана на рис. 10.5.

Упругими элементами являются резино-кордовые втулки одетые на соединительные пальцы.

Упругая муфта с резиновой звездочкой показана на рис. 10.6

На рис. 10.7 изображена муфта с упругим элементом в виде внутреннего тора. Две одинаковые полумуфты 2 соединены тороидальным упругим элементом 1, края которого прижаты к полумуфтам нажимными кольцами 3 и винтами 4, равномерно расположенными по окружности.

Муфта с резиновой конической шайбой изображена на рис. 10.8. Резино -металлический упругий элемент 6 крепят к полумуфтам 1 и 2 винтами 5 равномерно расположенными по окружности. Современные способы привулканизации резины к металлу позволяют получить прочность соединения не ниже прочности самой резины. Муфта не обладает высокими компенсирующими свойствами. Однако ее с успехом применяют в приводах машин для гашения вредных крутильных колебаний. Меняя угол конуса можно получить необходимую крутильную жесткость муфты.

На рис. 10.9 изображена муфта с упругими элементами в виде стальных стержней, работающих на изгиб при действии вращающего момента.

Полумуфты 1 и 7 соединены цилиндрическими стальными стержнями (пружинами) 5, равномерно расположенными по окружност. Крышка 3 и кожух 4 удерживают стержни от выпадения и удерживают смазку в муфте благодаря уплотнениям 2 и 8. Для уменьшения износа пружин и их гнезд муфта заполняется маслом с антизадирными присадками через масленку 6.

Полумуфты изготавливают из сталей 45, 40Х, стержни – из высоколегированных пружинных сталей, крышки и кожухи – из чугуна Сч12.

Механические сцепные муфты

Муфты, с помощью которых можно легко разъединить валы (часто – во время работы), называют сцепными. К таким муфтам относятся муфты с геометрическим замыканием и муфты.

Сцепные муфты с геометрическим замыканием. Муфты с геометрическим замыканием классифицируются по форме зацепляющихся элементов.

Муфта с прямоугольными зубцами (рис. 10.10, а) может передавать крутящий момент в обе стороны. Ее левая часть жестко крепится (шпонкой) на валу. Правая часть крепится на другом валу скользящей шпонкой и сцепляется или расцепляется с левой частью перемещением рычага в пазе. Главный недостаток такой муфты – трудность сцепления. Зубчатая муфта, которая сцепляется легче, однако передает крутящий момент только в одном направлении, показана на рис.10.10, б.

Материал кулачковых муфт должен обеспечивать высокую твердость рабочих поверхностей кулачков. Используют стали марок: 20Х, 12ХН3А с цементацией и закалкой до твердости 54 – 60 НRс. При частых включениях используют стали: 40Х, 40ХН, 35ХГСА с закалкой рабочих поверхностей зубьев до твердости 40 – 45 НRс.

Муфты свободного хода



Эти муфты служат для передачи вращающего момента только в одном направлении, когда угловые скорости ведущей и ведомой полумуфт равны. Если угловая скорость ведомой полумуфты превысит угловую скорость ведущей полумуфты, муфта автоматически разъединит соединенные агрегаты.

Роликовая муфта свободного хода представлена на рис. 10.11. Муфта состоит из обоймы 1 и звездочки 2, являющиеся полумуфтами, роликов 3, расположенных равномерно по окружности, и прижимных устройств, состоящих из поршня и пружины 7. Ролики удерживают боковые крышки 4, которые фиксируют пружинные кольца. Обойму от поворота удерживает шпонка 5. Ведущим звеном муфты может быть как звездочка, так и обойма. Когда обойма начнет обгонять звездочку ролик силами трения о звездочку и обойму смещается в более широкую часть клинового зазора и полумуфты размыкаются.

Муфты предельного момента

На рис. 10.12 показана фрикционная муфта, применяемая в механизмах вращения кранов и на поворотных лебедках. Эта муфта одновременно является соединительной. Она соединяет вал электродвигателя с редуктором. Муфта снабжена тормозным шкивом, связь двигателя с механизмом осуществляется через диски. Часть дисков закреплена через шлицы на втулке, жестко соединенной с валом редуктора, другая часть дисков закреплена на диске. Жестко соединенном с электродвигателем. Диски прижаты друг к другу постоянной силой, развиваемой сжатыми пружинами, Величина сжатия пружин, определяющая величину крутящего момента передаваемого муфтой, регулируется резьбовым кольцом.


10.2. Подшипники

Подшипники это самые распространенные детали в машиностроении. Не-

возможно представить любой современный механизм без подшипника, функции которого заключаются с одной стороны, в значительном уменьшении трения между вращающейся и неподвижной деталями механизма, а с другой – в способности нести определенную нагрузку. Важную роль играет и уплотнение, которое защищает подшипник от внешних воздействий и удерживает в нем смазку.

Долговечность и надежность любого механизма, в значительной мере, зависит от правильности выбора и качества применяемых подшипников, уплотнений и смазок. Подшипники по виду используемых в них деталей и их взаимодействия в процессе работы подразделяют на подшипники качения и подшипники скольжения. Наиболее распространены подшипники качения, которые в свою очередь классифицируют по направлению воспринимаемой нагрузки относительно вала (радиальные, радиально-упорные, упорно-радиальные и упорные); форме тел качения: шариковые, роликовые; числу тел качения: однорядные, двухрядные и т.д. (см. табл. 10.1).

Таблица 10.1
Роликовые подшипники
Характеристика Вид Характеристика Вид
Радиальный роликоподшипник однорядный Радиальный сферический однорядный подшипник
Радиальный роликоподшипник двухрядный Радиальный роликоподшипник сферический двухрядный
Радиально-упорный роликоподшипник Упорный роликоподшипник сферический
Продолжение табл.10.1
Конический роликоподшипник Упорно-радиальный роликоподшипник
Шариковые подшипники
Радиальный шарикоподшипник однорядный Подшипник радиальный шариковый сферический двухрядный
Разъёмный радиальный шарикоподшипник Подшипник шариковый упорный однорядный
Радиально-упорный шарикоподшипник Подшипник шариковый упорный двойной
Радиально-упорный шарикоподшипник двухрядный Упорно-радиальный шарикоподшипник
Игольчатые подшипники
Игольчатый подшипник с сепаратором без колец Игольчатый подшипник двухрядный
Игольчатый подшипник с сепаратором без колец двухрядный Игольчатый подшипник с штампованным наружным кольцом и открытым торцом
Игольчатый подшипник однорядный Игольчатый подшипник с штампованным наружным кольцом и закрытым торцом
Окончание табл. 10.1
Комбинированные подшипники
Подшипник комбинированный (радиальный игольчатый и радиально-упорный шариковый) Подшипник комбинированный (радиальный игольчатый
Корпусные подшипники

Крепежные соединения

В машиностроении применяют четыре основных вида резьбовых крепежных соединений: болтами с гайками (рис.10.13,a), ввертными болтами (винтами) (рис.10.13,б ), шпильками (рис.10.13, в ) промежуточное (рис. 10.13, г ).

1. Соединение болтами применимо только при возможности выполнения сквозных отверстий в сопрягаемых деталях.



2. Соединение ввертными болтами применяют при глухом нарезном отверстий (рис.10.13, д), когда невозможно применить болт с гайкой, или при сквозном нарезном отверстии, когда возможна установка болта только с одной стороны соединения.

Деталь с резьбовыми отверстием выполняются из стали, ковкого и высокопрочного чугуна, титанового сплава, бронзы. В деталях из мягких сплавов (алюминиевых, магниевых, цинковых и т.д.) требуется использование промежуточных нарезных втулок из более твердого металла.

3. Соединение шпильками применяют для деталей из мягких (алюминиевых и магниевых сплавов) или хрупких (серого чугуна) материалов, а также при глухих или сквозных нарезных отверстиях в случаях, нежелательности частых выкручиваний шпилек.

4. Кроме описанных основных видов соединений применяются и промежуточные. К ним относится, например, применяемое соединение, изображенное на рис.10.13, ж . Болт закрепляют с помощью гайки в гладком отверстии одной детали; другую деталь притягивают гайкой, навертываемой на свободный конец болта.

Крепежные детали общего назначения изготавливают чаще всего из стали 35, ответственные детали (шатунные болты, силовые шпильки и т.д.) - из хромистых сталей типа 40Х, хромансиля типа 30ХГС, жаропрочных сталей типа 30ХМ, 50ХФА, 25Х12М1Ф, из коррозионно-стойких сталей типа 30Х13, 40Х13.
В серийном и массовом производстве резьбу нарезают методами вихревого нарезания и фрезерования. Наиболее производительным и вместе с тем обеспечивающим наивысшую прочность резьбы является метод накатывания резьбы.

Отраслевые стандарты

Они составляются на изделия, применяемые только в определенной отрасли.

Каждый машиностроительный завод или группа заводов какой-либо отрасли промышленности имеет свои стандарты и нормали. Это технические документы, предписывающие применение только определенных профилей металла, размеров штампов, способов обработки. Они устанавливают и размеры крепежных деталей: гаек, болтов, шайб и т. д. И когда конструктор разрабатывает машину, он обязан придерживаться тех стандартов и нормалей, которые приняты на заводах-изготовителях. Чем больше будет в новой машине стандартных приборов, аппаратов и деталей, тем проще машина в изготовлении и надежнее в эксплуатации. Ведь такие детали выпускаются в большом количестве, и, следовательно, они дешевле, их можно легко случае повреждения заменить.

Государственные и отраслевые стандарты регламентируют технические данные изделий, обязательные виды и способы их испытания и проверки. Завод-изготовитель обязан все это строго соблюдать и не имеет права выпускать изделия с отступлением от ГОСТа или ОСТа.

На изделия, которые выпускаются в небольшом количестве, не разрабатывают стандартов. Вместо них заводы составляют технические условия, которые также определяют все показатели изделия и строго соблюдаются изготовителями.

В тех случаях, когда государственные стандарты охватывают сразу группу машин одного назначения, на каждый отдельный вид машины для уточнения стандарта также составляются отдельные технические условия.

Валы и оси

Вращающиеся детали машин устанавливаются на осях или валах. Валы всегда вращаются вместе с деталями и передают крутящий момент; оси же, вращаются ли они вместе с деталями или остаются неподвижны, момента не передают и только под­держивают детали. Поэтому оси нагружены только изгибающими усилиями, а валы, кроме них, и крутящими моментами.

Валы бывают прямые, коленчатые и гибкие (рисунок 3.8). Когда диаметр червяка или шестерни близок к диаметру вала, их изготовляют как одно целое, например, вал с червяком, вал с зуб­чатой шестерней.

Валы

а – прямые; б – коленчатые; в – гибкие.

Рисунок 3.8.

Валы и вращающиеся оси устанавливаются опорами (цапфами) в подшипниках. Цапфы, воспринимающие осевую нагрузку, называются пятами.

Подшипники

Валы и детали, вращающиеся вокруг них, поддерживаются на подшипниках. Различают подшипники скольжения и качения.

Подшипники скольжения (рисунок 3.9). В зависимости от величины и на­правления нагрузок, возникающих на валах, поддерживаемых подшипниками скольжения, различают подшипники радиаль­ные, которые могут воспринимать нагрузки, направленные радиально, и упорные подшипники, которые могут воспринимать усилия как направленные вдоль оси, так и радиальные.

Поверхность цапфы в радиальных подшипниках скользит относительно его внутренней поверхности. Уменьшение сил тре­ния между трущимися поверхностями создается слоем смазки. При работе цапфа занимает в подшипнике эксцентричное положе­ние, и поэтому смазка между поверхностями подшипника и цапфы принимает форму клина Цапфа, вращаясь, увлекает смазку в узкий зазор, где создается масляная подушка, поддержи­вающая цапфу. Слой масла, разделяющий цапфу и подшипник, создается также, если в зазор подается масло при помощи масляного насоса.

Подшипники скольжения ус­танавливаются для валов боль­шого веса, когда требуется раз­борка подшипника, либо когда последний работает в агрессив­ных средах или при большом загрязнении.

Подшипник скольжения с разъемным корпусом


1 – крышка; 2 – болты; 3 – вкладыши; 4 – корпус; 5 – масленка колпачковая.

Рисунок3.9.

Подшипник качения (рисунок 3.10) состоит из наружного и внутреннего колец с дорожками качения. Между кольцами в дорожках качения устанавливаются шарики или ролики, которые катятся по дорожкам. Чтобы ролики или шарики находились на одинаковом расстоянии один от другого, в подшипниках предусмотрены сепараторы, пред­ставляющие собой штампованные кольца с отверстиями для ро­ликов или шариков.

Основные типы подшипников качения

Рисунок 3.10.

Широко используются роликовые подшипники (при малых диаметрах роликов они называются игольчатыми).

Подшипники качения можно разделить на три типа: радиаль­ные, воспринимающие радиальные нагрузки и допускающие не­большие осевые нагрузки; радиально-упорные, воспринимающие как радиальные, так и осевые нагрузки, но величина последних не должна превышать 0,7 от разности между допустимой и дей­ствующей радиальными нагрузками; упорные, воспринимающие только осевые нагрузки.

Муфты

Для соединения валов, являющихся продолжением один дру­гого, или расположенных под углом, а также для передачи кру­тящего момента между валом и сидящими на нем деталями при­меняют муфты.

По назначению они разделяются на муфты постоянного дей­ствия (неуправляемые) и муфты сцепные (управляемые).

Муфты, соединяющие валы жестко , различают сле­дующих видов:

- Втулочные муфты просты по конструкции, малы по габариту (рисунок 3.11). Недостатком их является то, что для соединения валов последние необходимо раздвигать. Муфты применяют для диаметров валов, не превышающих 120 мм.

Втулочные муфты:


а – с призматическими шпонками; б – с сегментными шпонками; в – с штифтами; г – с шлицами.

Рисунок 3.11.

- Фланцевые муфты (рисунок 3.12) обычно состоят из двух полумуфт и бывают двух типов. В одном типе муфт болты устанавливают без зазора при этом болты работают на срез. В другом типе муфт болты устанавливают с зазором. В этом случае крутящий момент передается под действием момента трения, создаваемого затяжкой болтов.

Муфты, соединяющие валы при некотором их взаимном смещении или перекосе в результате неточности изготовления, монтажа или деформации во времени работы, называются компенсирующими .

Имеется несколько типов компенсирующих муфт:

Наиболее простая муфта представляет собой две полумуфты, такие же, как у жестких муфт, только болт в одной из полумуфт упирается в резиновые прокладки, что позволяет компенсировать неточности в положении валов.

- Крестовые муфты применяются для соединения валов, когда могут быть большие смещения осей. Они состоят из двух полумуфт, на торцах которых имеются пазы. Между полу­муфтами помещается, диск, на торцах которого предусмотрены выступы, перпендикулярно расположенные по отношению один к другому. Недостатком этих муфт является большой износ пазов, так как во время работы средний диск движется относительно полумуфт. Между диском и полумуфтами возникают силы трения, вызывающие радиальные усилия, которые передаются на вал.

- Шарнирные муфты (рисунок 3.13) применяют для передачи движения между валами, расположенными под углом. Возможность передачи вращения под углом до 45° обеспечивается тем, что муфта имеет два шарнира, расположенные взаимно перпендикулярно.