Из каких элементов состоит древесина. Строение и состав древесины. Свойства и использование хвойных пород

Человек использует древесину с незапамятных времен. Топливо, строительные материалы, мебель, музыкальные инструменты - изделия из нее сопровождают нас всю жизнь. Кроме этого, деревья - это природные календари и живые исторические памятники.

Существует целая отрасль науки - дендрохронология, которая позволяет узнать возраст изделия, а также в какой области было срублено дерево, из которого оно было изготовлено. Изучая срезы годовых колец, можно узнать о природе и атмосфере давних времен. Достоинства и недостатки, строение, древесина как строительный материал, свойства - все эти вопросы заслуживают внимания.

Как все устроено

Свойства и характеристики материала невозможно понять, предварительно не изучив строение и состав древесины. Само понятие зависит от того, кто его употребляет. Для обычного человека и строителя это исключительно часть дерева под корой, которую можно употреблять в быту или производстве. Для ботаника и древесины - это весь комплекс, включающий в себя все элементы от корней до кроны.

Крона в промышленности используется незначительно, а ветви идут как сырье для и картона. Основное значение имеет ствол. На поперечном разрезе взору открывается строение ствола древесины. Самый верхний слой - кора, защищает живые клетки от внешних воздействий. Между корой и телом ствола располагается слой живых клеток - кадмий. В самом центре через весь ствол проходит сердцевина. Рыхлые ткани, из которых она состоит, делают ее непригодной для утилитарных нужд.

Ядро дерева состоит в основном из омертвевших клеток, отложений смолы, красящих и дубильных веществ. Ядро окружает заболонь - часть дерева, которая отвечает за проведение воды к листьям от корней. Соответственно, в ней много влаги, она больше пропускает воду и сильнее подвержена гниению. Ярко выраженное ядро есть не у всех деревьев. В некоторых из них нет разницы между центральной и окраинной частью ствола. Такие породы называются заболонными.

Микроскопическое строение древесины

Применяя микроскоп, можно глубже изучить строение. Древесина состоит в целом из омертвевших клеток. Молодые растительные клетки состоят из оболочки и внутренней части - цитоплазмы и ядра. Основой тонкой прозрачной мембраны является целлюлоза или клетчатка. С течением времени растительные клетки претерпевают метаморфозу и, в зависимости от заложенной функции, превращаются в своей массе либо в кору (пробкование), либо в древесину (одревеснение).

В клетках постоянно образуется лигнин. Он и служит причиной одревеснения. Разделяют два вида древесных клеток - прозенхимные и паренхимные. Первый вид составляет основную массу древесины, в зависимости от породы - от 85% до 99%. В свою очередь, они разделяются по своим функциям. Проводящие клетки отвечают за доставку питательных веществ и влаги от корней к листве, механические - за прочность и устойчивость дерева. Паренхимные клетки выполняют функцию кладовой для растения. Они накапливают питательные вещества (жиры, крахмалы) и отдают их по мере надобности в трудный период.

Хвойные породы

В зависимости от вида деревьев различается и их строение. Породы древесины делят на хвойные и лиственные. Строение хвойных пород отличается большей простотой. Основную массу составляют трахеидные клетки. К особенностям хвойных пород можно отнести наличие клеток, вырабатывающих смолу. У разных видов они могут быть как хаотично разбросаны, так и объединены в систему смоляных ходов.

Лиственные породы

Более сложны пород и их строение. Древесина состоит из сосудов, волокон либриформа и паренхимных клеток. Так как лиственные деревья сбрасывают осенью листву, зимой они нуждаются в большом запасе пищи. Отсюда и большее количество паренхимных клеток, отвечающих за накопление питательных веществ, чем у хвойных пород. Это можно увидеть по ярко выраженной сердцевине.

Свойства

Целым рядом характерным свойств обладает древесина. Особенности строения тому причина. Прочность у древесины довольно высока, и среди строительных материалов по этому показателю она занимает промежуточное положение. А учитывая небольшой удельный вес, она сравнима в этом плане с металлом. Слабым местом древесины является то, что она - анизотропный материал. Способность сопротивления к разрушению зависит от направления силы относительно расположения волокон. Самые лучшие показатели прочности видны при воздействии на материал вдоль волокон.

Жесткость древесины мала, причина этому - специфическое строение. Древесина - пористый, гибкий материал. Балки способны восстановить свою форму после кратковременной нагрузки. Но остаточные деформации, вследствие длительного воздействия, остаются навсегда. Деревянная балка не сможет восстановить свою форму после долгой эксплуатации.

Твердость строительных материалов определяется тем, какая нагрузка необходима для вдавливания стального шарика с определенными размерами. Для самых жестких пород древесины она составляет всего 1000 Н. При этом низкая твердость - это и одно из главных достоинств материала. Дерево легко обрабатывается, в нем прочно удерживаются гвозди, шурупы, самонарезающиеся винты.

Определяется удельным содержанием влаги в порах. В только что оно достигает 100%. В зависимости от назначения свежесрубленную древесину подвергают сушке до необходимых показателей от 40 до 15%.

Достоинства

Древесина обладает малым значением теплопроводности. Ее можно с успехом применять в качестве теплоизолирующего материала. Простота в обработке позволяет использовать широкий круг инструментов. Невозможно представить любой оркестр без музыкальных инструментов, изготовленных из дерева. Чарующие звуки скрипки - результат такого свойства древесины, как способность к резонансу. Древесина легко изгибается, открывается большой выбор для изготовления различных гнутых конструкций. Также деревянные изделия отличаются хорошими звукопоглощающими характеристиками. Красивая поверхность открывает простор для фантазии при дизайне помещений.

Недостатки

Способность деревянных изделий воспринимать нагрузки зависит от направления приложения силы. Это объясняется анизотропным строением древесины. Кроме того, характеристики прочности зависят еще и от близости к центру ствола, влажности, наличия сучков, трещин. Это заставляет тратить много времени на отбор пригодного материала для работы.

Являясь органическим материалом, древесина беззащитна для насекомых, плесени, грибков. Для долговечной эксплуатации требуется проводить дорогостоящую химическую обработку. Стоит отметить, что деревянные конструкции без предварительной обработки - легкая добыча для огня.

Переработка древесины

В целом можно выделить три вида обработки древесины:

  • Самый распространенный - механический способ. Дерево пилят, строгают, раскалывают.
  • При химико-механической обработке материал подвергают промежуточной подготовке. смешивают со связующим веществом и нагревают. Происходит химическая реакция полимеризации, и на выходе получают такие материалы, как фанера, древесностружечные плиты, фибролит.
  • При химической обработке на древесину воздействуют кислотами, щелочами, солями, подвергают нагреву. Из продуктов такой обработки можно назвать канифоль, камедь, дубильные вещества, целлюлозу.

Деревья старше человека на сотни миллионов лет. Все когда-либо существовавшие цивилизации основаны на применении древесины. Книги, мебель, музыкальные инструменты - все это возможно благодаря этому уникальному природному материалу.

На поперечном разрезе ствола различных пород древесины обычно видны: сердцевина, древесина, камбий и кора.

Древесина хвойных пород состоит из внутренней, более темной части - ядра и наружной, более светлой - заболони. Ядро представляет собой более плотную часть древесины, не проводящую воду и имеющую значительно меньшую влажность, чем заболонь. Как ядро, так и заболонь состоят из концентрических колец - годичных слоев по числу которых можно определить возраст дерева. Сердцевина расположена в центре ствола, занимает небольшую его часть и отличается темной окраской и меньшей плотностью, чем древесина. Камбий является образовательной тканью. Кора состоит из внутренней живой части - луба, проводящего раствор органических веществ из листьев, и наружной части - корки.

Древесина состоит из клеток и поэтому обладает большой пористостью, которая сказывается на физических свойствах древесины. Пористостью древесины объясняется ее низкая теплопроводность и малый удельный вес. Удельный вес древесины разных пород в среднем составляет около 1,55. Поры в различных породах древесины занимают 56-72% от ее объема. Они заполнены воздухом, который является плохим проводником тепла. Поэтому теплопроводность сухой древесины меньше, чем влажной. Древесина имеет весьма сложный химический состав. В ее состав входят: целлюлоза, лигнин и гемицеллюлозы. Древесина содержит в небольших количествах также смолу, жиры, терпены, дубильные и другие вещества (посторонние вещества древесины).

Целлюлоза (клетчатка) является главной (50% по весу) и наиболее важной в техническом отношении составной частью древесины.

Клетчатка - высокомолекулярный полисахарид со свойствами коллоида; эмпирическая формула (C 6 H 10 O 5). Целлюлоза не растворяется в воде, спирте, эфире, бензине и других обычных растворителях. Растворителем для нее является аммиачный раствор гидрата окиси меди. В древесине содержится 23-27% лигнина, свойства которого еще недостаточно изучены.

Элементарный состав лигнина следующий: углерода 61-65%, водорода 4,9-6,4% и кислорода 28,6-34,1%. Колебания в элементарном составе лигнина объясняются разной степенью его чистоты и измененности. Лигнин изолируется различными методами, поэтому неодинаковы его эмпирические формулы, предложенные различными исследователями, например: С 22 Н 20 О 7 , С 10 Н 10 О 3 , С 40 Н 42 О 16 , С 120 Н 138 О 35 . Точно не установлен и молекулярный вес лигнина. Предполагают, что он достигает нескольких тысяч. О химической природе лигнина существуют две теории. До последнего времени большинством исследователей лигнин рассматривался как вещество ароматической природы. Дальнейшие исследования показывают, что в образовании лигнина принимают участие неизвестные неустойчивые углероды. Так появилась теория углеводного происхождения лигнина.

В. Н. Козлов предполагает, что лигнин, кроме ароматических веществ, содержит какие-то углеводы. Гемицеллюлоза - это углеводная часть древесины, которая в отличие от целлюлозы легко гидролизуется разбавленными кислотами. Гемицеллюлозы так же как и целлюлоза относятся к высокомолекулярным соединениям. В смоляных ходах древесины хвойных пород содержится живица, которая вытекает наружу при поражениях древесины. Живица образуется в живых тонкостенных клетках, выстилающих смоляной ход. В химическом отношении живица представляет собой раствор смоляных кислот в терпенах. При перегонке часть живицы улетучивается. Летучая часть называется скипидаром, а твердый остаток - канифолью.

Дубильные вещества (танниды, нетанниды) в различных породах содержатся в коре, древесине, корнях. В древесине сосны и ели дубильных веществ очень мало, в коре же их содержится значительно больше. В клеточном соке растений танниды находятся в растворенном виде или выделяются из него в виде капелек. После отмирания клеток они остаются в их полостях в виде аморфных масс или пропитывают клеточные стенки.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Древесина представляет собой сложный композиционный материал, созданный природой. При рассмотрении структуры древесины принято различать макроструктуру, различимую невооруженным глазом, и микроструктуру, различимую с помощью оптической и электронной микроскопии.

Макроструктура древесины - строение древесины, видимое невооруженным глазом. Рассматриваются три основных разреза ствола: поперечный - торцовый и два продольных - радиальный, проходящий через ось ствола, и тангентальный, проходящий по касательной к годовым кольцам (рис. 3.1).

На поперечном разрезе древесины ствола видны концентрические годовые кольца, располагающиеся вокруг сердцевины. Каждое годовое кольцо имеет два слоя: ранней (весенней) и поздней (летней) древесины. Ранняя древесина светлая и состоит из крупных тонкостенных клеток.

Рис. 3.1. Строение ствола дерева:

Поздняя древесина более темного цвета, состоит из мелких клеток с толстыми стенками; поэтому она менее пориста и обладает большей прочностью, чем весенняя.

В процессе роста дерева стенки клеток древесины внутренней части ствола, примыкающей к сердцевине, постепенно изменяют свой состав, одеревеневают и пропитываются у хвойных пород смолой, а у лиственных - дубильными веществами. Движение влаги в древесине этой части ствола прекращается, и она становится более прочной, твердой и менее способной к загниванию. Эту часть ствола у разных пород называют ядром или спелой древесиной.

Микроструктура древесины. Изучая строение древесины под микроскопом, можно увидеть, что основную массу древесины составляют клетки механической ткани, имеющие веретенообразную форму и вытянутые вдоль ствола.

Срубленная древесина состоит из отмерших клеток, т. е. только из клеточных оболочек (рис. 3.2). Оболочки клеток сложены из нескольких слоев очень тонких волоконец, называемых микрофибриллами, которые компактно уложены и направлены по спирали в каждом слое под разным углом к оси клетки (подобно отдельным прядям в канате). Это обеспечивает высокую прочность древесине.

Химический состав древесины. Микрофибриллы состоят из длинных, напоминающих цепи макромолекул целлюлозы (от лат. cellula - клетка). Эти цепи построены из большого числа (нескольких сотен) ячеек глюкозы (поэтому целлюлозу можно назвать полисахаридом):

Макромолекулы целлюлозы благодаря наличию сильно полярных групп -он жестко связаны друг с другом, чем объясняется отсутствие у древесины области высокоэластического состояния, возникающего при нагревании у большинства линейных полимеров (например, у полиэтилена). Эти же гидроксильные группы объясняют гигроскопичность древесины и сопутствующие ей набухание и усушку (см. п. 3.4). Механизм гигроскопичности заключается в образовании электростатической связи между полярными - он группами целлюлозы и диполями воды: от их вида, места расположения, размеров, а также от назначения древесной продукции. Один и тот же порок в некоторых видах продукции делает древесину непригодной, а в других понижает ее сортность или не имеет существенного значения. Поэтому в стандартах на конкретные виды лесопродукции имеются указания о допустимых пороках.

Пороки древесины можно разделить на несколько групп: пороки формы ствола, пороки строения древесины, сучки, трещины, химические окраски и грибковые поражения и покоробленности. Ниже рассмотрены основные виды пороков.

Пороки формы ствола легко определяются на растущем дереве, поэтому стволы таких деревьев могут быть отбракованы на лесосеке. К этой группе пороков относятся сбежистость, закомелистость и кривизна ствола (рис. 3.3).

Сбежистость - значительное уменьшение диаметра по длине ствола. Нормальным сбегом считается уменьшение диаметра на 1 см на 1 м длины ствола. Этот порок уменьшает выход обрезных пиломатериалов. Кроме того, в материале оказывается много перерезанных волокон, что снижает его прочность.

Закомелистость - резкое увеличение диаметра комлевой (нижней) части ствола. Закомелистость бывает круглой и ребристой. В любом случае она увеличивает количество отходов и искусственно вызывает косослой в готовой продукции.

Кривизна ствола - искривление ствола дерева в одном или нескольких местах. Сильная кривизна переводит древесину в разряд непригодной для строительных целей.

Пороки строения древесины представляют собой отклонения от нормального расположения волокон в стволе дерева: наклон волокон, свилеватость, крень, двойная сердцевина и др. (рис. 3.4).

Рис. 3.3. Пороки формы ствола:

Наклон волокон (косослой) - непараллельность волокон древесины продольной оси пиломатериала. Это явление (особенно при больших углах наклона волокон) вызывает резкое снижение прочности древесины и затрудняет ее обработку.

Рис. 3.4. Пороки строения древесины:
а - наклон волокон; б - свилеватость; в - крень; г - двойная сердцевина

Пиломатериал, имеющий косослой, обладает повышенной склонностью к короблению при изменении влажности.

Свилеватость - крайнее проявление косослоя, когда волокна древесины расположены в виде волн или завитков.

Свилеватость в некоторых породах (орех, карельская береза) придает красивую текстуру древесине; такие породы используются в отделочных работах.

Крень - изменение строения древесины, когда годовые кольца имеют разную толщину и плотность по разные стороны от сердцевины. Крень нарушает однородность древесины.

Сучки - самый распространенный и неизбежный порок древесины, представляющий собой основание ветвей, заключенные в древесине. Они нарушают однородность строения древесины, вызывают искривление волокон (свилеватость). Сучки уменьшают рабочее сечение пиломатериалов, снижая их прочность в 1,5…2 раза (а в тонких Досках и брусках и более).

По степени срастания сучков с древесиной ствола различают сучки сросшиеся, частично сросшиеся и несросшиеся (выпадающие). Особенно опасны сучки разветвленные (лапчатые) (рис. 3.5).

Рис. 3.5. Различные виды сучков: а - сросшийся здоровый; 6 - выпадающий; в - сшивной; г - разветвленный (лапчатый)

Здоровые сучки имеют древесину твердую и плотную без признаков гнили. Часто сучки загнивают вплоть до превращения в рыхлую порошкообразную массу - это так называемые табачные сучки.

Для изготовления несущих деревянных конструкций использует-ся древесина, имеющая только здоровые сросшиеся сучки. Количество и размещение сучков определяют сортность материала.

Трещины могут появляться как на растущем дереве, так и при высыхании срубленного дерева и пиломатериалов. Они нарушают целостность лесоматериалов, уменьшают выход высокосортной продукции, снижают прочность и даже делают их непригодными для строительных целей. Кроме того, трещины способствуют гниению древесины.

Различают следующие типы трещин: метик, морозобоина и отлуп, образующиеся на растущем дереве, и трещины усушки, образующиеся на срубленной древесине (рис, 3.6).

Метик - внутренние трещины, идущие вдоль ствола от центра к периферии; трещин может быть несколько как расположенных в одной плоскости, так и крестообразно.

Рис. 3.6. Виды трещин: а, б - метиковая простая и сложная; в, г - морозобоина открытая и закрытая; д, е - отлуп кольцевой и частичный

Морозобоина - наружная открытая продольная трещина, сужающаяся к центру. Такие трещины возникают при замерзании влаги в стволе во время сильных морозов.

Отлуп - полное или частичное отделение центральной части ствола от периферийной в результате усушки первой. Такие трещины располагаются по годовым кольцам.

Трещины усушки встречаются очень часто в древесине всех пород; они возникают в результате напряжений, вызванных неравномерной усадкой при быстрой сушке древесины на воздухе. Эти трещины направлены от периферии к центру вдоль волокон древесины.

Грибные поражения и химические окраски вызываются простейшими живыми организмами - грибами, развивающимися из спор и использующими древесину в качестве питательной среды, или микроорганизмами. Для развития грибов необходим кислород воздуха, определенная влажность и положительная температура. Различают грибы, поражающие деревья, растущие в лесу, и свежесрубленную Древесину, и грибы, развивающиеся на деревянных конструкциях.

На растущих деревьях могут развиваться деревоокрашивающие грибы. Они питаются содержимым клеток, не затрагивая их стенки. Поэтому прочность такой древесины изменяется незначительно, но на Древесине появляются цветные пятна и полосы.

Изменение окраски древесины без изменения ее механических свойств может происходить из-за биохимического окисления дубильных веществ, провоцируемого микроорганизмами.

Значительно более опасны дереворазру тающие грибы. Они питаются материалом стенок клеток - целлюлозой, разлагая ее с помощью ферментов до глюкозы.

Это возможно только при достаточной влажности древесины. Глюкоза в теле гриба используется в процессе его жизнедеятельности и, в конце концов, превращается в углекислый газ и воду:

Гниение по сути - это то же самое, что и горение, но с очень малой скоростью.

Известно большое число дереворазрушающих грибов. Среди них наиболее часто встречаются так называемые домовые грибы. При поражении такими грибами древесина делается трухлявой и легкой, а на ее поверхности появляется налет плесени в виде мягких подушечек. Домовый гриб может разрушить древесину очень быстро (в течение нескольких месяцев).

Процесс гниения прекращается при снижении влажности древесины до 18…20 % (сухая древесина не гниет), снижении температуры ниже 0 °С или исключении поступления кислорода.

Повреждения насекомыми (червоточины) представляют собой ходы и отверстия, проделанные в древесине насекомыми (жуками-короедами, точильщиками), которые живут в ней и ею же питаются. Жуки-точильщики могут развиваться в сухой древесине и даже в мебели.

Рис. 3.7. Продольная покороб-ленность

Поверхностные червоточины не влияют на механические свойства древесины, так как при распиловке уходят в горбыль. Глубокие червоточины нарушают целостность древесины и снижают ее прочность.

Покоробленности - нарушение формы пиломатериалов при изменении ее влажности при сушке и хранении или под действием внутренних напряжений при продольной распиловке крупных элементов на более мелкие. Покоробленность бывает поперечная, продольная (простая и сложная) и винтообразная (крыловатость) (рис. 3.7).

Ни один из строительных материалов не обладает такими качествами, как древесина. Она очень удобна в обработке. Кроме того, это один из самых прочных, легких материалов, долго сохраняющих тепло и приятный запах.

Для того чтобы приступить к работе с древесиной, обязательно потребуется терпение. Не беда, если что-то с первого раза не будет получаться – все приходит с опытом. Глазомер и твердая рука могут быть помощниками, которые не позволят ошибиться при резании, пилении, сверлении, долблении и вытачивании древесины.

Древесина не относится к капризным строительным материалам, но некоторые ошибки она просто не простит: нельзя будет надставить несколько сантиметров неровно отпиленной доски или выровнять испорченную поверхность без ущерба будущему изделию. Это не пластилин и не глина, но в пластичности им древесина не уступает.

Сырая или специально вымоченная древесина прекрасно принимает ту форму, которую вы пожелаете ей придать.

При работе можно либо исказить, либо подчеркнуть рисунок древесины. Во втором случае выполненное изделие только выиграет и прекрасно будет смотреться без покрытия слоем краски. А усилить игру тонов помогут различные древесные лаки, которые наносятся на поверхность двумя-тремя тонкими слоями.

Для того чтобы задуманное изделие максимально подчеркивало текстурный рисунок древесины и не противоречило ему, необходимо изучить его.

Нет такого бруска древесины, на котором бы не прослеживалось направление роста волокон. Наиболее полное представление о том, что получится из выбранного бруска, может возникнуть только в том случае, если распилить брусок по трем направлениям: под углом в 45°, вдоль волокон и поперек них.

Срез под углом в 45° называется тангентальным срезом, который дает текстуру древесины в виде конусообразных линий (рис. 1, а). Срез вдоль волокон даст радиальный срез, который покажет вертикальные линии волокон (рис. 1, б). Срез, проходящий поперек волокон, по сути дела, представит текстуру дерева из годичных колец (рис. 1, в). Такой срез и будет называться поперечным.

Рис. 1. Виды срезов: а – тангентальный; б – радиальный; в – поперечный.

Если правильно расположить на бруске задуманный чертеж, то внешний вид будущего изделия только выиграет. Кроме того, сложность и красота будущего рисунка напрямую зависят от разнообразия текстуры древесины.

Строение древесины

Сделав только поперечный срез, можно четко рассмотреть строение древесины. Каждый брусок необтесанного дерева имеет кору – это кожа дерева, которая не используется в работе, ее обязательно снимают. Под корой располагается зона роста дерева, которая практически неразличима невооруженным глазом.

На свежем спиле растущего дерева слой камбия представлен очень хорошо. Если снять кору, откроется тонкая прослойка влажной ткани зеленоватого цвета – это и есть камбий. За камбием расположена собственно древесина с годичными кольцами.

Древесину еще называют заболонью. В центре каждого дерева есть ядро, которое по цвету может сливаться с заболонью или иметь более темный цвет. В зависимости от этого разделяют заболонные породы древесины, где ядро не имеет ярко выраженной структуры и клетки расположены так же плотно, как и в заболони (рис. 2, а), и ядровые, где, соответственно, ядро хорошо различимо (рис. 2, б). Иногда заболонные породы дерева называют безъядровыми.


Рис. 2. Виды пород: а – заболонные; б – ядровые.

К ядровым древесным породам относятся все хвойные (сосна, кедр, ель, тис, лиственница) и некоторые лиственные породы, например дуб, ясень, тополь. Большинство лиственных пород составляет ряд заболонных, или безъядровых: береза, граб, ольха, клен.

Кроме микроструктуры древесины, к ней относится плотность расположения древесных клеток. На создание композиции и возможность использования того или иного бруска в работе влияет макроструктура древесины, представленная годичными кольцами и сердцевидными сосудами.

К макроструктуре также относится наличие различных сучков, наростов и неразвившихся побегов-глазков, которые отклоняют годичные кольца и образуют различные свилеватости.

Древесина, где наиболее четко различимы годичные кольца, горизонтальные и вертикальные сосуды, представляется наиболее интересной для обработки. Практически все хвойные породы – сосна, лиственница, пихта, ель, кедр – обладают такой древесиной.

Физические свойства древесины

К физическим свойствам древесины относятся ее плотность, влажность, теплопроводность, звукопроводность, электропроводность, стойкость к коррозии (то есть способность противостоять действию агрессивной среды), а также ее декоративные качества (цвет, блеск, запах и текстура).

Плотность древесины – это отношение ее массы к объему, измеряемой в г/см3или кг/м3. Зависит этот показатель от породы древесины, возраста, условий роста, ее влажности. Нет необходимости вдаваться в подробности изучения данного показателя; достаточно знать, что древесина, отличающаяся большей плотностью, служит гораздо дольше и менее подвержена необратимым изменениям, чем менее плотная (однако следует учесть, что для чистоты сравнительного анализа плотность древесины измеряют на образцах влажностью 15 %). Самая большая плотность у дуба, далее по убывающей следуют: ясень, клен, лиственница, бук, береза, орех, сосна, липа, осина, ель, пихта.

Влажность лесоматериалов, используемых в строительстве и при изготовлении деревянных изделий, является показателем ее качества и долговечности. На практике различают древесину: комнатно-сухую, с влажностью 8–12 %; воздушно-сухую искусственной сушки, с влажностью 12–18 % (эти два вида древесины получают путем сушки пиломатериалов в сушильных камерах); атмосферно-сухую естественной сушки, с влажностью 18–23 % (получают в результате продолжительного хранения лесоматериалов, уложенных штабелями на прокладках в сухих, проветриваемых помещениях или под навесом, без допуска воздействия прямых солнечных лучей), влажную древесину, с влажностью более 23 %.

Чем меньше показатель влажности древесины, тем меньше она подвержена гниению. Однако не следует стремиться использовать лесоматериалы наименьшей влажности. Дело в том, что структура древесины очень гигроскопична: она легко отдает переизбыток влаги при повышении температуры и уменьшении влажности окружающей среды и с такой же легкостью впитывает влагу при снижении температуры и повышении влажности окружающей среды. Это неминуемо приводит: в первом случае – к усушке древесины (уменьшению ее объемных размеров); во втором случае – к ее разбуханию (увеличению объемных размеров). И усушка, и разбухание изменяют объемные размеры деревянной детали неодинаково в различных направлениях; результат этого – коробление древесины, деформация деревянных конструкций, что в конечном итоге приводит их в негодность. Самый простой способ предупреждения коробления – применение древесины, влажность которой в момент использования соответствует эксплуатационной влажности.

Теплопроводность, звукопроводность. Деревянные дома из сруба или бруса хорошо удерживают тепло. Здоровая древесина способна распространять звук вдоль волокон: если после удара по комлевой части бревна, доски или бруса слышится чистый звенящий звук, то это говорит о высоком качестве древесины; прерывистый, глухой звук свидетельствует о ее загнивании.

Коррозионная стойкость древесины очень важна для строений и изделий, изготовленных из нее, особенно тех, которые эксплуатируются в основном под открытым небом. Следует отметить, что хвойные породы более стойки к коррозии по сравнению с лиственными, поскольку хвойная древесина пропитана природными смолистыми веществами.

Цвет, блеск, запах и текстура являются физическими свойствами древесины, позволяющими визуально определить ее породу.

Цвет способен указать на качество: например, синеватая окраска хвойной древесины свидетельствует о начальной стадии загнивания (цвет здоровой сосны – от коричневато-желтого в зонах, насыщенных смолой, до светло-желтого; цвет ели – от светло-желтого до белого); черные и темно-коричневые пятна на буковой древесине – признак загнивания (цвет здорового бука – от желто до розовато-бежевого).

Свидетельствовать о пороках древесины может и изменение запаха: если в помещении, где хранится древесина бука, ощущается стойкий запах прелой листвы, а запах в помещении, где хранятся сосновые лесоматериалы, затхлый – это явный признак процессов гниения.

Текстура древесины зависит от распила, а механическая прочность тех или иных досок или брусков – от вида разреза (рис. 3). Но и цвет, и блеск, и текстура имеют чисто декоративное значение.


Рис. 3. Составные части поперечного распила ствола и текстура древесины на трех разрезах: а – составные части поперечного распила ствола: 1 – лубяной слой коры; 2 – камбий; 3 – заболонь; 4 – ядро; 5 – сердцевина; 6 – сердцевидные лучи; б – текстура древесины сосны на трех разрезах: 1 – на поперечном; 2 – на радиальном; 3 – на тангентальном.

Механические свойства древесины

Механические свойства древесины более важны, так как от них зависят прочность и долговечность сооружений и изделий из дерева.

Механическая прочность древесины – это ее возможность противостоять различным статическим и динамическим нагрузкам. По направлению действия нагрузок различают прочность на сжатие, изгиб, скалывание (сдвиг), растяжение (рис. 4). При этом предел прочности древесины на сжатие и растяжение при направлении нагрузки вдоль волокон значительно выше, нежели при направлении нагрузки поперек волокон. Механическая прочность древесины зависит от ее физических свойств: увеличение влажности снижает прочность, а плотная древесина более прочна, чем легкая и рыхлая.


Рис. 4. Испытание прочности древесины: а – направление нагрузки: 1 – вдоль волокон; 2 – поперек волокон радиально; 3 – поперек волокон тангентально.

Пластичность – способность деревянной детали изменять форму под воздействием нагрузки и сохранять эту форму после снятия приложенной нагрузки. Это свойство имеет значение при изготовлении гнутых деталей: важно знать, что с увеличением влажности и температуры древесины ее пластичность увеличивается; поэтому детали, которые нужно выгнуть, обрабатывают горячей водой или паром. Высокой пластичностью (по убывающей) обладает древесина бука, вяза, дуба, ясеня. Хвойные породы древесины пластичностью, достаточной для сгибания деталей, не обладают вследствие прямолинейной структуры волокон.

Твердость древесины обусловлена ее способностью сопротивляться внедрению инородных тел. По этому признаку древесину разделяют на твердую – бук, дуб, клен, ясень, вяз, лиственница (самые твердые – самшит и акация) и мягкую – липа, ель, сосна, ольха.

Твердость определяет еще одно механическое свойство древесины – ее износостойкость, способность противостоять трению. Здесь имеется прямая взаимосвязь: чем тверже древесина, тем выше показатель ее износостойкости.

Из книги: Коршевер Н. Г. Работы по дереву и стеклу

Содержание статьи

ДРЕВЕСИНА, сравнительно твердый и прочный волокнистый материал, скрытая корой основная часть стволов, ветвей и корней деревьев и кустарника. Состоит из бесчисленных трубковидных клеток с оболочками в основном из целлюлозы, прочно сцементированных пектатами кальция и магния в почти однородную массу. В природном виде используется в качестве строительного материала и топлива, а в размельченном и химически обработанном виде – как сырье для производства бумаги, древесноволокнистых плит, искусственного волокна. Древесина была одним из главных факторов развития цивилизации и даже в наши дни остается одним из важнейших для человека видов сырья, без которого не могли бы обойтись многие отрасли промышленности.

Источники.

Хотя древесная ткань имеется и у папоротников, почти всю древесину люди получают из деревьев двух главных отделов царства высших растений – голосеменных и покрытосеменных. Голосеменные растения – очень древняя форма, представленная исключительно древесными видами, к которым относятся хвойные деревья («мягкие породы»), а именно сосна, ель, кедр, поставляющие основную часть древесины, используемой человечеством. Отдел же покрытосеменных отличается большим разнообразием и делится на два класса – однодольные и двудольные. Лишь некоторые из однодольных (бамбук, пальмы, юкка) дают древесную ткань, которая имеет ограниченное, в основном местное значение. Что же касается двудольных, то к этому классу относятся важные лиственные («твердые») породы – дуб, эвкалипт, клен, древесина которых особенно ценна для мебели, отделки интерьеров и пр.

Структура.

Клетки древесины, как и клетки коры, возникают из многократно делящихся клеток прокамбия и камбия, которые составляют почти непрерывный слой образовательной ткани между корой и древесиной. Камбий возникает из клеток, отделившихся от конуса нарастания стебля или корня. Последний же берет начало в клеточно-образовательном центре зародыша в семени. В древесине имеются два класса клеток – паренхимные и прозенхимные. Паренхимные клетки обычно тонкостенные с простыми (неокаймленными) порами. В заболони они выполняют функцию физиологически активной живой ткани (обеспечивают хранение питательных веществ). Прозенхимные же клетки – толстостенные с окаймленными порами. Они теряют свой протопласт, когда вырастают и достигают окончательной толщины стенок, после чего превращаются в среду, проводящую жидкость и обеспечивающую опору.

Для древесины характерны годичные кольца, обусловленные изменениями размеров клеток и толщины их стенок в связи с изменениями условий роста. В зонах умеренного климата контраст колец связан с отличием «летней» древесины одного года от «весенней» следующего. По числу колец на уровне земли можно определить возраст дерева.

Химический состав.

В состав древесины входит ряд сложных органических соединений. Полный химический анализ показывает, что она содержит около 50% углерода, 6% водорода и 44% кислорода. Стенка клетки имеет сетчатую структуру из взаимосвязанных длинноцепных молекул целлюлозы, наполненную другими углеводородами (гемицеллюлозами), а также лигнином и различными экстрактивными веществами. Цементирующим межклеточным веществом являются в основном пектаты кальция и магния, а в клеточных полостях, особенно в древесине лиственных пород, накапливаются смолы, камеди, жиры, таннины, пигменты и минеральные вещества. В состав древесины входит 45–60% целлюлозы, 15–35% лигнина и 15–25% гемицеллюлоз. Количество инородных, экстрактивных веществ в значительной мере зависит от породы и неодинаково в заболони и ядровой древесине. Содержание минеральных веществ (зольность) древесины обычно значительно меньше 1%.

Физические свойства.

Относительная плотность древесины лежит в пределах от 0,1 (бальза) до ~ 1,3 (железное дерево и некоторые другие тропические породы). Относительная плотность большей части деловой древесины составляет 0,2–0,75, плотность – 190–850 кг/м 3 . Относительная плотность древесинного вещества равна приблизительно 1,5. Следовательно, лишь около 1/6 объема легкой деловой древесины составляет твердое вещество, тогда как в более тяжелых сортах на него приходится около половины объема. Относительная плотность может быть различной и для одной породы деревьев, что обусловлено переменчивостью условий произрастания. Так, для сосны длиннохвойной эта величина может составлять от 0,25 до 0,80 (среднее значение 0,53).

И древесина дерева на корню, и деловая древесина сильно поглощают воду, что обусловлено ее капиллярным строением. Свободная вода заполняет клеточные полости, а связанная удерживается за счет адсорбции в промежутках между волокнами. Когда вся свободная вода при сушке удалена, так что всю сосудистую систему заполняет связанная вода, древесина достигает точки насыщения волокон, что для большинства пород соответствует содержанию влаги около 28%. Дальнейшее удаление воды приводит к усадке, так как при десорбировании адсорбированной воды волокна сжимаются и просвет сосудов уменьшается.

В зависимости от наличия влаги древесина усаживается или разбухает. Усадка от точки насыщения волокон до состояния после сушки в печи максимальна (4–14%) в тангенциальном направлении (параллельно годичным кольцам), примерно вдвое меньше (2–8%) в радиальном направлении (поперек годичных колец) и практически отсутствует (0,1–0,2%) вдоль волокон. Тангенциальная, радиальная и объемная усадки приблизительно пропорциональны изменению влагосодержания древесины.

Механические свойства древесины тесно связаны с ее волоконно-клеточной структурой. Ее прочность максимальна вдоль и довольно низка поперек волокон. Предел прочности (отнесенный к единице массы) древесины при растяжении вдоль волокон в 40 раз, а при сжатии – в 3–4 раза больше, чем у стали. Предел прочности при сжатии вдоль волокон примерно в 6 раз, а при сдвиге – примерно в 4 раза больше, чем поперек волокон. Поскольку усилия сжатия и изгиба типичны для сооружений, древесина особенно подходит для использования в строительных конструкциях в качестве колонн и коротких балок. Почти все прочностные характеристики древесины изменяются пропорционально плотности и обратно пропорционально влагосодержанию ниже точки насыщения волокон. Наклон волокон, т.е. отклонение их направления от продольной оси, снижает прочность деревянного конструктивного элемента. Точно так же она снижается при наличии в досках и бревнах сучков, включенных частей ветвей, нарушающих или полностью прерывающих ход волокон. Однако в отсутствие растягивающих и изгибающих нагрузок небольшие сучки допустимы. Прочность древесины снижается также из-за повреждений гнилостными микроорганизмами и насекомыми.

Применение древесины.

Применение в строительстве.

Древесина применяется в строительстве в таких формах, как пиломатериалы прямоугольного сечения (брус, доски), шпон, фанера, железнодорожные шпалы, столбы, сваи, стойки, гонт и древесноволокнистые плиты. Больше всего потребляется пиломатериалов прямоугольного сечения. Их производят распиловкой бревен, затем отделывают до стандартной ширины и длины, сортируют по качеству, сушат и поставляют потребителям в необработанном с поверхности, обработанном или формованном виде. Фанеру изготавливают, склеивая нечетное число тонких слоев древесины (шпона) так, чтобы волокна соседних слоев были взаимно перпендикулярны. Фанерные панели отличаются от обычных пиломатериалов тем, что (наряду с отсутствием ограничений по ширине) их прочность более равномерна в разных направлениях, они лучше сопротивляются раскалыванию, а их размеры меньше изменяются в условиях переменной влажности.

Топливо и древесная масса.

Применение древесины как топлива в масштабах всего мира имеет все еще очень важное значение. В высокоразвитых промышленных странах топливное потребление древесины на протяжении последних десятилетий непрерывно уменьшалось в связи с переходом на уголь, газ, нефть и электричество. Такая тенденция, по-видимому, сохранится и в будущем по мере того, как с дальнейшим развитием техники будут все более доступны другие виды топлива и источники тепла. Применение же древесины в виде древесной массы в последнее время, наоборот, непрерывно увеличивалось и, по прогнозам, будет продолжать увеличиваться в обозримом будущем. Древесина превращается в древесную массу механическим истиранием с применением воды или путем обработки химикатами, разрушающими лигниновую связь и освобождающими волокна. Затем древесная масса переделывается в различные виды бумаги, коробочный картон, древесноволокнистые плиты. После специальной обработки она используется как целлюлозное сырье для изготовления синтетических тканей и пластиков.

Усовершенствования технологии.

Благодаря новым технологическим разработкам древесина стала шире использоваться в традиционных областях и нашла новые области применения. К таким достижениям относятся усовершенствования в технологии сушки, противогнилостная и противопожарная обработка, слоистые конструкции, сборные конструкции заводского изготовления, высокоэффективные столярные клеи. Достигнуты большие успехи в целлюлозно-бумажной промышленности, а также в производстве таких материалов на основе химической переработки древесины, как синтетическое волокно, целлофан, спирт, дрожжи, древесноволокнистые плиты, древесина с полимерной пропиткой, древесный слоистый пластик и различные формованные изделия. Прогресс в области переработки и применения древесины явился стимулом к дальнейшему развитию лесного хозяйства.