Физико-механические свойства плодов, виноградников и кормовых культур. Физико-механические свойства зерна, о которых нужно знать Физико механические свойства сельскохозяйственных культур

Бахитов Т. А. 1 , Федотов В. А. 2

1 Кандидат технических наук, Оренбургский государственный университет, 2 ORCID: 0000-0002-3692-9722, Кандидат технических наук, Оренбургский государственный университет

ВЛИЯНИЕ СТРУКТУРНО-МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК ЗЕРНА ПШЕНИЦЫ НА ЕЕ ТЕХНОЛОГИЧЕСКИЕ СВОЙСТВА

Аннотация

В статье рассматриваются вопросы целевого назначения муки из зерна пшеницы в зависимости от степени дисперсности. Описаны различия в формировании помольных партий зерна в соответствии с его структурно-механическими свойствами. Выявлены значимые связи показателя твердозерности зерна и реологическими свойствами теста. Определен характер связей, разработаны уравнения регрессии, позволяющие прогнозировать технологические свойства зерна по его твердозерности. Показана важность оценки структурно-механических характеристик при переработке зерна пшеницы на производстве.

Ключевые слова : хлеб, твердозерность зерна, количество и качество клейковины, экспресс-анализ.

Bahitov T. A. 1 , Fedotov V. A. 2

1 PhD in Engineering, Orenburg State University, 2 ORCID: 0000-0002-3692-9722, PhD in Engineering, Orenburg State University

INFLUENCE OF WHEAT GRAIN STRUCTURAL-MECHANICAL PROPERTIES ON ITS TECHNOLOGICAL QUALITY

Abstract

The article examines the questions of the purpose for wheat grain flour depending on the dispersion degree. There are the differences in the formation of grinding grain batches in accordance with its structural and mechanical properties in article. It is revealed significant relationships indicator of grain hardness and rheological properties of the dough. It is determined the nature of the relationship developed by the regression equation used to predict the technological properties of grain hardness. We show the importance of assessing the structural and mechanical characteristics in the processing of wheat grain production.

Keyword : bread, grain hardness, gluten quantity and quality, rapid analysis.

Технологи хлебопекарного и кондитерского производств предъявляют различные требования к муке, используемой для разных видов изделий. Количественные и качественные характеристики углеводно-амилазного и белково-протеиназного комплекса зерна, а отсюда и соотношения компонентов муки подвержены значительным колебаниям, что существенно влияет на ее технологические свойства.

Размеры частиц должны соответствовать целевому назначению муки. Известно, что для высококачественных макаронных изделий предпочтительна мука из твердой пшеницы с преобладанием частиц размером более 250 мкм. В хлебопекарной муке второго сорта количество частиц величиной более 250 мкм не должно превышать 2 %, в высшем и первом сортах ограничивают содержание частиц размером более 140 и более 190 мкм соответственно. Для кексов и некоторых других видов мучных кондитерских изделий желательна мука из мягкозерной низкостекловидной пшеницы с частицами величиной до 30 мкм. Считается, что мука с III драной системы максимально отвечает требованиям, предъявляемым к муке для бараночных изделий (36 – 38 % сырой клейковины со средней упругостью и растяжимостью в пределах 16 – 22 см). Для выпечки хлебобулочный изделий высшего качества (типа саратовского калача, городской булки) требуется мука с упругой клейковиной I группы в количестве 35 – 40 %. Установлено, что мука, содержащая 17 – 26 % сырой клейковины, дает печенье (сахарное и затяжное) лучшего качества, чем мука с 31 – 34 % клейковины, которая была принята за эталон .

В таблице 1 приведена оптимальная характеристика муки для хлебобулочных изделий, печенья, пирожных, кексов, крекеров, бисквитов.

Ряд исследователей считает, что при нормальных условиях произрастания пшеницы ее сила определяется сортом и содержанием белка. Так, зерновые стандарты США подразделяют типы пшеницы (за исключением белозерной) на товарные классы, которые отражают наследственные различия свойств сортов и возможности потенциального использования.

Таблица 1 – Оптимальная характеристика муки для нужд хлебопекарного и кондитерского производств

Целевое назначение зерна Размеры частиц, мкм Зольность, % Содержание белка, % Качество клейковины
Хлеб 50 0,50 11,5 Сильная
Печенье 30 – 50 0,44 9,5 Слабая
Пирожные 30 – 50 0,44 8,5 Слабая
Крекеры 35 – 50 0,44 9,5 Сильная
Бисквиты 30 – 45 0,40 10,0 Сильная

Независимо от содержания белка сорта твердозерной красной пшеницы дают крупитчатую муку, которую пользуют в основном для хлебопечения. При большом количестве белка мука из высококачественных сортов этих типов пшеницы характеризуется высокими значениями показателей седиментации по Зелени, вязкости, водопоглотительной способности, сме­сительной ценности и объемного выхода хлеба и других дрожжевых изделий.

Сила муки заметно возрастает с увеличением количества белка. Муку из мягкозерной пшеницы средней си­лы используют в чистом виде или в смеси с более сильной или более слабой мукой из мягкозерной и твердозерной пшеницы для изготовления печенья, крекеров, пирогов и других целей (таблица 2) .

Сорта мягкозерной пше­ницы с небольшим количеством протеина (до 9,5 %) обеспечивают отличное качество муки для изготовления кексов, бисквитов, печенья. Высокие значения содержания белка и степени повреждения крахмала при помо­ле твердозерных сортов мягкой пшеницы обусловливают целесообразность ее использования для выработки хле­бопекарной муки.

Таблица 2 – Целевое назначение зерна в зависимости от физических свойств теста

Известно, что твердозерные сорта отличаются хоро­шими мукомольными и хлебопекарными свойствами, некоторые из них можно использовать для производства макаронных изделий. При переработке мягкой твердозерной пшеницы получается около 45 % крупки и 10 % полукрупки с зольностью 0,54; 0,80 % и 0,43; 0,60 % соответственно.

Дифференцированный помол целесообразно проводить на мукомольных заводах с несколькими секциями, использующих в качестве улучшителей сорта сильной и наиболее ценной твердозерной пшеницы .

Мука, полученная при хлебопекарном помоле сортов твердозерной пшеницы, отличается большими размерами частиц (крупитчатостью) по сравнению с готовым про­дуктом из мягкозерной пшеницы. Это обусловливает ухудшение показателя белизны и увеличение времени образования теста. В то же время водопоглотительная способность по фаринографу и водопоглощение при выпечке хлеба, а также щелочеводоудерживающая способность у муки из твердозерной пшеницы, как правило, выше, чем у муки из мягкозерной, что обусловлено повышенными содержанием белка и степенью повреждения крахмала.

Однако в муке, выработанной из сортов сильной и ценной пшеницы со стекловидной конси­стенцией эндосперма, содержание белка (клейковины) в большинстве случаев превышает оптимальный уровень количества белка в муке, предназначенной для хлебопечения. Как правило, клейковина такой муки слишком упруга и недостаточно растяжима, что также затрудняет выработку высококачественных хлебобулочных изделий. Поэтому для обеспечения требуемых свойств хлебопекарной муки на мукомольных заводах смешивают твердозерную и мягкозерную пшеницу (обычно два – три компонента, на отдельных заводах до десяти). При этом необходимо раздельно подготавливать компоненты помольной партии в соответствии с их структурно-механическими свойствами .

Выявлены значимые связи твердозерности и показателей водопоглотительной способности муки, времени образования теста, устойчивости теста (таблица 3).

Представляет интерес разработка экспресс-анализов степени твердозерности зерна, позволяющие оперативно изменять параметры помола и соотношение зерна в помольных партиях .

Для этого использовались методы оптической микроскопии с целью получения изображения частиц размола зерна, техническое зрение – для поиска и классификации частиц по форме и размеру. Собранные статистические данные позволили разработать способ определения твердозерности зерна пшеницы (патент на изобретение № 2442132).

Особенности технологических свойств сортов твердозерной и мягкозерной пшеницы нужно учитывать при формировании помольных партий зерна. Мукомольные заводы, зная структурно-механические характеристики пшеницы, могут активно влиять на результаты ее переработки в процессе подготовки к помолу и измельчения.

Таблица 3 – Результаты регрессионного анализа зависимости реологических свойств теста от показателя твердозерности Х, кг/мм²

Список литературы / References

  1. Федотов В.А. Факторы формирования потребительских свойств зерномучных товаров / В. А. Федотов // Вестник Оренбургского государственного университета. – 2011. – № 4. – С. 186-190.
  2. Калачев М.В. Малые предприятия для производства хлебобулочных и макаронных изделий / М. В. Калачев. – М. : ДеЛи принт, 2008. – 288 с.
  3. Медведев П.В. Влияние твердозерности зерна на его макаронные свойства / П. В. Медведев, В. А. Федотов, И. А. Бочкарева // Международный научно-исследовательский журнал. – 2015. – № 11 (42). – С. 68 – 74.
  4. Медведев П.В. Комплексная оценка потребительских свойств зерна и продуктов его переработки / П. В. Медведев, В. А. Федотов, И. А. Бочкарева // Международный научно-исследовательский журнал. – 2015. – № 7-1 (38). – С. 77-80.

Список литературы на английском языке / References in English

  1. Fedotov V.A. Faktory formirovanija potrebitel’skih svojstv zernomuchnyh tovarov / V. A. Fedotov // Vestnik Orenburgskogo gosudarstvennogo universiteta . – 2011. – № 4. – P. 186-190.
  2. Kalachev M.V. Malye predprijatija dlja proizvodstva hlebobulochnyh i makaronnyh izdelij / M. V. Kalachev. – M. : DeLi print, 2008. – 288 p.
  3. Medvedev P.V. Vliianie tverdozernosti zerna na ego makaronny`e svoi`stva / P. V. Medvedev, V. A. Fedotov, I. A. Bochkareva // Mezhdunarodnyj nauchno-issledovatel’skij zhurnal . – 2015. – № 11 (42). – P. 68 – 74.
  4. Medvedev P.V. Kompleksnaja ocenka potrebitel’skih svojstv zerna i produktov ego pererabotki / P. V. Medvedev, V. A. Fedotov, I. A. Bochkareva // Mezhdunarodnyj nauchno-issledovatel’skij zhurnal . – 2015. – № 7-1 (38). – S. 77-80.

К физическим свойствам зерна и семян относятся: форма зерна, линейные размеры и крупность, объём, выполненность и щуплость, выравненность, масса 1000 зёрен, стекловидность, плотность, плёнчатость и лузжистость, натура, механические повреждения зерна, трещиноватость, механические свойства, аэродинамические свойства, заражённость вредителями, засорённость.

Форма зерна и семян весьма разнообразна. Зерно и семена разных культур и их сортов отличаются по форме. В пределах каждой культуры и отдельной партии зерна по форме также наблюдаются различия вследствие неодинаковой степени физиологической зрелости и других причин.

Существуют следующие формы зерна: шарообразная, чечевицеобразная, эллипсоид вращения; форма с различными размерами в трёх направлениях.

Форма зерна и семян имеет существенное значение при очистке от примесей и сортировании. Зерно, более приближающееся по форме к шару, даёт больший выход муки, поскольку при такой форме на оболочечные частицы приходится относительно меньшая доля, чем при любой другой форме. Зерно шарообразной формы имеет более высокую натуру, так как плотнее укладывается в мерке.

Под линейными размерами понимается длина, ширина и толщина зерна и семени. Длиной считается расстояние между основанием и верхушкой зерна, шириной - наибольшее расстояние между боковыми сторонами и толщиной - между спинной и брюшной стороной (спинкой и брюшком). Совокупность линейных размеров называется также крупностью.

Крупное зерно даёт больший выход готовой продукции, так как в таком зерне больше эндосперма и меньше оболочек.

Из трёх размеров (длины, ширины и толщины) толщина в наибольшей степени характеризует мукомольные свойства зерна.

Объём зерна имеет значение для величины и расчёта скважистости зерновой массы, величины объёмной массы, определения режима очистки и переработки зерна, величины выхода готовой продукции.

Выполненными называют зёрна, достигшие при полном созревании формы с максимальной выравненностью всех структур, характерных для сорта, линии, гибрида.

Выполненным может быть также не крупное, а мелкое, нормально развитое зерно. Такое зерно хотя и уступает несколько по качеству крупному зерну, но способно дать доброкачественные продукты переработки, хоть и в значительно меньшем объёме.

Щуплым называется зерно недостаточно выполненное, неестественно сморщенное вследствие неблагоприятных условий его развития. Щуплое зерно мелкое, с ограниченным запасом питательных веществ, иногда состоящее почти из одной оболочечной ткани.

Между выполненными и щуплыми зёрнами находятся промежуточные формы зерна различных размеров с неодинаковой выполненностью.

Степень щуплости зависит от стадии налива зерна, в которую стали проявляться неблагоприятные условия созревания.

Выравненностью называется степень однородности отдельных зёрен, составляющих зерновую массу, по влажности, размерам, химическому составу, цвету и другим показателям. Наибольшее значение имеет выравненность по влажности вследствие особой роли влаги при хранении и переработке и по крупности.

В практической работе обычно имеют дело с выравненностью по размерам. Выравненность нельзя путать с крупностью. Это разные понятия. Зерно может быть выравненным и одновременно мелким, крупным и вместе с тем невыравненным. Выравненность имеет особенно большое значение при переработке зерна в крупу.

Выравненные по размерам семена дают дружные всходы, растения развиваются равномерно, и, следовательно, зерно созревает одновременно, что облегчает уборку урожая, а также повышает качество зерна нового урожая.

Масса 1000 зёрен показывает количество вещества, содержащегося в зерне, его крупность. Естественно, что более крупное зерно имеет и более высокую массу 1000 зёрен. В крупном зерне количество оболочек и масса зародыша по отношению к ядру наименьшие. Масса 1000 зёрен является также хорошим показателем качества семенного материала. Крупные семена дают более мощные и более продуктивные растения.

Для определения массы 1000 зёрен навеску после удаления сорной и зерновой примесей смешивают и распределяют ровным слоем в виде квадрата, который делят по диагонали на четыре треугольника и из каждых двух противоположных треугольников отсчитывают пробы по 500 целых зёрен (по 250 зёрен от каждого треугольника). Массу обеих проб складывают и получают массу 1000 зёрен. Разница между массами двух проб не должна превышать 5% их среднего значения.

Масса отдельных зёрен одной и той же культуры колеблется в больших пределах в зависимости от сорта, года урожая, района произрастания, степени выполненности и т. д.

Стекловидность зерна.

Зерно имеет разную структуру, т. е. определённую взаимосвязь, взаиморасположение тканей, придающее определённое строение её тканям. Структура зерна может быть стекловидной и мучнистой.

Мучнистым называется зерно, имеющее непрозрачную консистенцию с рыхломучнистой структурой. Мучнистое зерно на поперечном разрезе имеет белый цвет и вид мела.

Стекловидным - зерно, имеющее почти прозрачную консистенцию с роговидной структурой в разломе. Поперечный разрез стекловидного зерна сходен с поверхностью осколка стекла и создаёт впечатление прозрачной поверхности монолитного плотного вещества.

Различают также частично стекловидное зерно. К нему относят зёрна с частично просвечиваемым или частично непросвечиваемым эндоспермом. В частично стекловидном зерне стекловидная структура может быть несплошной, или занимать часть поверхности поперечного среза, или в виде мелких пятен, в беспорядке разбросанных по поверхности среза. В этом случае срез становится пёстрым.

Стекловидность наблюдается в зерне пшеницы, ржи, ячменя, кукурузы, риса. Она является важным технологическим показателем зерна. Стекловидное зерно оказывает большое сопротивление раздавливанию и скалыванию, в связи с чем, при размоле требуется больше энергии, чем для мучнистого зерна. Стекловидное зерно даёт более высокий выход муки, чем мучнистое. Из мучнистого зерна мука получается, как правило, мягкая, мажущаяся (при растирании между пальцами). Мука из стекловидного зерна более крупитчатая, что очень ценится в хлебопечении.

Общая стекловидность выражается в процентах и равняется числу процентов полностью стекловидных зёрен плюс половина числа процентов частично стекловидных зёрен.

Всхожесть семян

Это способность семян образовывать нормально развитые проростки, то есть стебли растения в самом начале его развития из семени (ростки) вместе с развившимися зародышевыми корешками. Всхожесть определяют проращиванием семян в течение семи-десяти дней при оптимальных условиях, установленных для каждой культуры.

Энергия прорастания

Это способность семян быстро и дружно прорастать. Энергию прорастания определяют в тех же условиях и одновременно со всхожестью (в первые 3–4 дня). Энергия прорастания считается важным показателем посевных качеств семян, она характеризует одновременность роста и развития растений, а также созревания и налива зерна, что улучшает его качество и облегчает уборку. Количество нормально развитых проростков подсчитывают в сутках (первая цифра - энергия прорастания, вторая - всхожесть).

К физическим свойствам зерна и семян относятся: форма зерна, линейные размеры и крупность, объем, выполненность и щуп­лость, выравненность, масса 1000. зерен, стекловидность, плотность, пленчатость и лузжистость, натура, механические повреждения зер­на, трещиноватость, механические свойства, аэродинамические свойства, зараженность вредителями, засоренность

1 Существуют следующие формы зерна: шарообразная, чечеви-цеобразная, эллипсоид вращения; форма с различными размерами в трех направлениях (длина, ширина, толщина)

2 линейные размеры – длинна, ширина, толщина зерновки. Длинна расстояние между основанием и верхушкой зерновки. Ширина – наибольшее расстояние между боковыми сторонами. Толщина – расстояние между спинкой и брюшной стороной зерновки. Интегральный п-ль крупности , где a,b,l – линейные р-ры. Классифицируют: крупные-L>4мм., средниеL=2,5-4 мм, мелкие 2,5>L/

3 объём з-на необходим для расчета скважистости зерновой массы, для определения режимов очитки и измельчения, считается, что чем больше V зерновки, тем выход готовой продукции. V з-на определяется путём погружения навески з-на в мерную колбу, где нахродится жидкость не вызывающая набухания з-на (толуол). Объём одной зерновки может быть: пшеница – 12-36 мм3, рож – 10-30 мм3, ячмень – 20-40 мм3, гречиха – 9-20 мм3. Объём зерна учитывается через такой п-ль как сферичность (отношении объёма к площади поперечного сечения зерновки (пшеница – 0,52-0,85мм, рож – 0,45-0,75мм), установлено что качество клейковины влияет на объём зерновки., при ухудшении качества клейковины уменьшается объём зерновки.

4 выполненность. Выполненными называются зёрна достигшие при полном созревании выравненности всех структур характерного для данного сорта. Выполненными могут быть мелкие и нормально развитые зёрна. Щуплым называется зёрна недостаточно выполненные, неестественно сморщенные в следствии неблагоприятных условий при формировании зерновки. На предприятии щуплость и выполненность не определяют. В научных исследованиях определяют отношение параметра поперечного сечения зерна и периметра окружности равной площади – коэф. крупности.(для нормального зернак=1.11)

5 выравненность: степень однородности отдельных зёрен составляющих зерновую массу по отдельным показателям качества (вл-ти, цвету,хим.составу. и т д). выравненность определяют 2-мя способами: 1-массе максимального остатка на сите 2- максимальной суммарной массе остатков на двух смежных ситах.

6 масса 1000 зёрен: х-т кол-во в-в содержащихся в зерне, и оценивает крупность зерна, при высокой М1000 меньшее кол-во оболочек и зародыша. М1000 определяют на сухое в-во.М100=(100-W)*M1000 сыр в-ва/100. Пшеница 10-75 гр, рож 10-45 гр, ячмень 20-55 гр., гречиха 15-40 гр. М1000 связанна с крупностью, стекловидностью, плотностью з-на, содержанием эндосперма, чем выше эти п-ли, тем выше М1000. При увеличении М1000 увеличивается выход готовой продукции и улучшается её качество.

7 стекловидность – косвенный показатель характеризующий содержание белка в зерне. Стекловидность усчитывается при выборе режимов ГТО. По стекловидности зерновая масса подразделяется на след группы: 1- высокостекловидные (Ст>60%), 2-среднестекловидное (СТ 40-60%), 3-низкостекловидное (Ст< 40%). Сущ понятие ложная стекловидность (неумелое хранение или неправильная сушка), которая появляется в результате закалки рыхлого эндосперма. При переработке такое з-но растирается как мыльный парашек, определяется в результате замачивания з-на и последующего растирания в руках. Внутренняя часть зерновки – в виде мажущейся или жидкой массы.

8 плотность з-на. Разницу в плотности з-на и примесей используют при очистке з-на. Плотность определяют при помощи пикнометра. Пшеница-1.33-1,55 г/м3, рож-1.26-1.42 г/см3, гречиха1.22-1.32 г/см3.

9 плёнчатость и лузжистость. Плёнчатость - сод-е в % в з-не цветковых оболочек (ячмень, просо, рис, овёс), плодовых(гречиха) или семенных (клещевина) оболочек, при х-ке масличных культур плёнчатость заменяется на лузжистость. Сод-е оболочек х-т ценность з-на при переработке. Чем меньше оболочек, тем больше в з-не эндосперма, а след. и пит. вещ-в. В крупном з-не содержится меньше оболочек, чем в мелком. Имеется несколько способов определения плёнчатости для просо и сорго применяются лабораторные шелушители, для некоторых культу применяются шелушильное устойство ГДФ. Овёс-18-46%, ячмень-7-15, просо-12-25%, рис- 16-24% гречиха-18-28, подсолнечник 35-78%.

10 натура з-на- масса 1л з-на в граммах определяется на пурке. На вел-ну натуры влияет: влажность, сод-е и состав примесей, ф-ма з-на, состояние поверхности, крупность, выравненность, зрелость, выполненность, М1000, плотность и плёнчатость. 1 высоконатурное(пшеница> 785 г/л, ячмень> 605 г/л, рож> 715 г/л, овёс > 510 г/л, подсолнечник> 460 г/л) 2-средненатурное 3 низконатурное (пшеница< 745 г/л, ячмень><543 г/л, рож< 675г/л, овёс < 460 г/л) физические св-ва зерновой массы.

К физическим свойствам относятся сыпучесть, самосортирование, скважистость и плотность укладки, сорбционные свойства и тепло-массообменные свойства(теплофизические).

Сыпучесть. Зерновая масса представляет собой дисперсную двухфазную систему: зерно-воздух и относятся сыпучим материалам.

Сыпучесть или подвижность зерновой массы объясняется тем, что в своей основе зерновая масса состоит из отдельных твёрдых мелких частиц: зерно основной культуры, фракции зерновой примеси.

Хорошая сыпучесть зерновых масс имеет огромное практическое значение. Потому что правильное использование этого свойства позволяет полностью избежать затрат ручного труда.

Зерновая масса легко перемещается различными транспортными средствами (конвейерами, пневмотранспортными установками), легко помещать зерновую массу в различные по размерам и формам автомобили, суда, ёмкости (склад, бункер, силос). Благодаря сыпучести зерновые массы можно перемещать самотёками. На основе принципа самотека построены все технологические процессы.

Сыпучесть зерновой массы характеризует показателями, которые называют углом трения - наименьший угол, при котором зерновая масса начинает скользить по какой-либо поверхности. При скольжении зерна по зерну этот угол трения называется углом естественного откоса.

Сыпучесть и угол естественного откоса зависит от многих факторов: форма, размеры, состояние поверхности зерна, влажность, количество примесей и их видовой состав, материал и состояние поверхности, по которой перемещается зерновая масса.

Наибольшей сыпучестью обладает зерновая масса состоящая из зёрен шарообразной формы, чем больше форма зерна отклонена от формы шара, тем будет меньше его сыпучесть.

Чем более шероховата поверхность зерна, тем меньше сыпучесть, тем больше угол естественного откоса.

Примеси в зерновых массах могут увеличить либо уменьшить сыпучесть и это зависит от их характера количества. Если примеси имеют гладкую поверхность(шарообразной формы), то такие примеси будут повышать сыпучесть, однако обычно встречаются примеси(солома, семена сорняков). Они уменьшают её сыпучесть, вплоть до полной её потери такие зерновые массы без предварительной очистки нельзя загружать на хранение.

С увеличением влажности зерновой массы ее сыпучесть уменьшается. Это явление характерно для всего зерно, но для шарообразной формы оно меньше выражено.

На сыпучесть оказывает влияние различные факторы, от которых она уменьшается или увеличивается, и потому угол естественного откоса для одной и той же культуры будет лежать в пределах: для пшеницы 23 - 38°, просо20-27°.

Самосортирование – способность зерновых масс терять однородность при перемещении или в свободном падении, т.е. расслоение зерновых масс, происходящее в результате различия свойств составляющих ее частиц (плотность, аэродинамические св-ва).

Явление самосортирование проявляется при загрузке и выпуске зерна из емкостей, при перевозках.

Явление самосортирования в практике хранения зерна является резко отрицательными и особенно при загрузке, т.к. происходит расслоение: наиболее тяжелые выполненные, крупные зерна сосредотачиваются в нижних и центральных слоях, в то время как мелкие, щуплые, мелкие зерна сосредоточены возле стен и на поверхности силоса.

Таким образом, в результате самосортирования нарушается однородность зерновой массы закладываемой на хранение, что способствует различным неблагоприятным процессам приводящих к порче зерна, т.к. мелкие, щуплые зерна имеют большую влажность.

Таким образом перед загрузкой, зерно обязательно нужно очистить. Существуют также проблемы с выпуском зерна из емкостей, так вследствие самосортирования качество зерновых отдельных порций, выпускаемых из силоса будут не однородными, что сказывается на эффективность переработки зерна, поэтому на мукомольных и крупяных заводах проектируется несколько выпускных отверстий.

Скважистость (S). Зерна укладывается не плотно и между ними имеются пространства заполненные воздухом – скважины.

Скважистость – это часть зерновой массы заполненная скважинами, т.е воздухом.

,

V 1 – общий объем зерновой массы;

V – истинный объем твердых частиц

Параллельно со скважистостью используется плотность укладки (t), которая определяется:

Плотность укладки – это часть объема зерновой массы, занятая твердыми частицами.

Такое св-во как скважистость имеет огромное значение в хранении зерна:

    Скважины заполненные воздухом, а это влияет на многие процессы протекающие в зерне (процессы переноса тепла, влаги, процессы дыхания, обеспечения жизненных функций зерна.

    За счет скважин обеспечивается газопроницаемость зерновых масс, что позволяет проводить такие технологические операции как активное вентилирование, газацию, дегазацию. За счет скважин могут осуществляется сорбционные св-ва.

    Важна не только величина скважистости, но и ее структура. Структура скважистости - это ее размер и форма. Структура скважистости влияет на уровень воздуха, газопроницаемости зерна, на уровень сопротивления воздуха при активном вентилировании, а также на уровень адсорбции

    Чем больше объем занимают скважины в зерновой массе, тем меньше зерна в хранилище и поэтому необходимо увеличивать емкость склада для загрузки всей партии.

Факторы влияющие на скважистость:

    Влажность влияет на скважистость двояко. С увеличением влажности уменьшается сыпучесть и увеличивается скважистость, но если увлажнение произошло в хранилище,то это приводит к набуханию зерна и как следствие уменьшению скважистости.

    Крупность. Крупное зерно имеет хорошую сыпучесть за счет большей плотности и меньшего количество оболочек и поэтому укладываются более плотно чем мелкие и уменьшаю скважистость.

    Шероховатость, морщинистость поверхности уменьшает плотность укладки и увеличивает скважистость и наоборот гладкие зерна укладываются с меньшей скважистости.

    Примеси. Крупные – увел. скважистость, мелкие – помещаясь в межзерновом пространстве уменьш. ее. Примеси с шероховатой поверхностью увел. скважистость.

    Выравненность. Выровненное зерно укладывается с большей скважистостью, а менее плотное, не выровненное с уменьш. скважистостью.

    Форма. Зерно округлой формы укладывается с большей плотностью и уменьш. скважистостью, а удлиненное – укладывается более рыхло, увел. скважистость.

    Размер зернохранилищ. Чем больше площадь склада, т.е. высота и ширина, тем выше плотность укладки и менш. скважистость.

    Сроки хранения. Чем длиннее срок хранения, тем больше уплотняется масса и скважистость уменш.

В зависимости от этих факторов скважистость зерновых масс может меняться в значительных пределах. Для всех культур скважистость составляет около 50%.

СОРБЦИОННЫЕ СВОЙСТВА ЗЕРНОВЫХ МАСС. СОРБЦИЯ РАЗЛИЧНЫХ ПАРОВ И ГАЗОВ ЗЕРНОВОЙ МАССЫ

Сорбционные св-ва – это св-ва сорбентов поглощать или выделять ары или газы различных веществ.

Зерно и продукты его переработки обладают этими свойствами. В зерновых массах наблюдаются такие сорбционные явления как:

    Адсорбция – явлн. поглощения или выделения паров и газов поверхностью продукта.

    Абсорбция - явлн. поглощения или выделения паров и газов всем объемом.

    Хемосорбция - явлн. химического взаимодействия паров и газов с вещ-ва зерна.

    Капиллярная конденсация - - явл. оседания ожиженых паров и газов на поверхности макро- и микропор.

Зерно и зерновая масса в целом является хорошими сорбентами и имеют значительную сорбционную емкость. Это объясняется следующими причинами:

    зерно имеет капиллярно пористую коллоидную структуру;

    скважистость.

Зерно является типичным капиллярно пористым коллоидным телом. Между клетками и тканью зерна имеются макро-и микро капилляры и поры. Стенки пор и являются поверхностью участвующую в сорбционных проявлениях – это так наз. активная поверхностью.

Активная поверхность зерновки во много раз превышает истинную поверхность в 200 раз.

Сорбционные процессы особенно характерны для оболочек зерна, т.к. имеют ярко выраженные капиллярно пористую структуру.

Такие процессы как увлажнение, активном вентилирование, сушка, хранение ведут с учетом сорбционных св-в зерна.

Различают 2 случая сорбционных проявлений: 1)сорбция различных паров и газов; 2) сорбция водяных паров (гигроскопичность).

Зерно и зернопродукты обладают хорошими гигроскопичными св-вами и поэтому необходимо учитывать это на всех этапах работы с зерном. При выращивании зерна в поле с сорными растениями (полынь, чеснок), обладающими специфичным запахом, который зерно может сорбировать. Таким образом зерно преобретает полынный или чесночный запах, который трудно удалить (удаляют при мойке зерна).

При транспортировке зерна в непригодной для этого машине (разлитый керосин, бензин) приводит к сорбированию этих вещ-в. Так же при проведении дезинсекции необходимо учесть сорбирование зерном различных химических препаратов вредных не только для насекомых, но и для животных и человека.

Гигроскоп. св-ва – это поглощение или выделение водяных паров.

ГОСТ 27186-86

Группа C00

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ЗЕРНО ЗАГОТОВЛЯЕМОЕ И ПОСТАВЛЯЕМОЕ

Термины и определения

Grain for supplies and delivery. Terms and definitions

МКС 01.040.67
67.060
ОКП 97 1000

Дата введения 1988-01-01

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством хлебопродуктов СССР

РАЗРАБОТЧИКИ

Г.С.Зелинский, Т.Е.Никитина, Р.З.Гуревич, П.Д.Буренин, Г.Е.Быков, Л.Н.Сысоева, В.К.Шутова

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 20.12.86 N 4445

3. Стандарт соответствует проекту международного стандарта ИСО/ТС S34/C4 N 449 и национальному стандарту Франции NF 00-250

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Номер пункта

ГОСТ 20081-74

5. ПЕРЕИЗДАНИЕ. Март 2010 г.


Настоящий стандарт устанавливает термины и определения понятий, относящихся к заготовляемому и поставляемому зерну.

Термины, установленные настоящим стандартом, обязательны для применения во всех видах документации и литературы, входящих в сферу действия стандартизации или использующих результаты этой деятельности.

Для каждого понятия установлен один стандартизованный термин.

Применение терминов - синонимов стандартизованного термина не допускается. Недопустимые к применению термины-синонимы приведены в стандарте в качестве справочных и обозначены пометой "Ндп".

Приведенные определения можно, при необходимости, изменять, вводя в них производные признаки, раскрывая значения используемых в них терминов, указывая объекты, входящие в объем определяемого понятия. Изменения не должны нарушать объем и содержание понятий, определенных в данном стандарте.

В случаях, когда в термине содержатся все необходимые и достаточные признаки понятия, определение не приведено и в графе "Определение" поставлен прочерк.

В стандарте приведен алфавитный указатель содержащихся в нем терминов.

Стандартизованные термины набраны полужирным шрифтом, а недопустимые синонимы - курсивом.

Термин

Определение

ОБЩИЕ ПОНЯТИЯ

1. Зерно

Плоды злаковых культур, используемые для пищевых, кормовых и технических целей

2. Заготовляемое зерно

Зерно, закупаемое государством через государственную заготовительную систему

3. Поставляемое зерно

Зерно, направляемое государственной заготовительной системой для продовольственных, кормовых и технических целей

4. Сильная пшеница

Зерно пшеницы отдельного сорта или смеси сортов, характеризующееся генетически обусловленными очень высокими хлебопекарными качествами и потенциальной способностью быть улучшителем слабой в хлебопекарном отношении пшеницы

5. Ценная пшеница

Зерно пшеницы отдельного сорта или смеси сортов, характеризующееся генетически обусловленными высокими хлебопекарными качествами, используемое для производства хлебопекарной муки в чистом виде или в смеси с небольшими количествами слабой в хлебопекарном отношении пшеницы

6. Класс зерна

Комплексный показатель качества зерна, характеризующий его пищевые и технологические свойства

7. Твердозерность

Структурно-механические свойства зерна, характеризующие степень его сопротивления разрушающим усилиям в процессе дробления и определяющие его целевое назначение

8. Качество зерна

Совокупность свойств зерна, обусловливающих его пригодность удовлетворять определенные потребности в соответствии с назначением

9. Свойство зерна

Объективная особенность зерна, проявляющаяся при уборке, хранении, переработке и потреблении

10. Показатель качества зерна

Характеристика свойства зерна, входящего в состав его качества

11.

Количественное значение показателя качества зерна, установленное нормативно-технической документацией

12. Базисная норма зерна

Норма показателя качества зерна, в соответствии с которой производят расчет при его приемке

13. Ограничительная норма зерна

Норма показателя качества зерна, устанавливающая предельно допустимые требования к качеству заготовляемого и поставляемого зерна

14. Тип зерна

Классификационная характеристика зерна по устойчивым природным признакам, связанная с его технологическими, пищевыми и товарными достоинствами.

Примечание. К природным признакам зерна относят: ботанический вид, цвет, форму

15. Подтип зерна

Классификационная характеристика зерна, определяемая в пределах типа и отражающая изменения природных признаков.

Примечание. К изменяющимся природным признакам относят: стекловидность, цвет

16.

По ГОСТ 20081

17. Партия зерна

Количество зерна, однородное по качеству, предназначенное к одновременной приемке, отгрузке или хранению, оформленное одним документом о качестве

18. Проба зерна

Определенное количество зерна, отобранное от партии для определения качества

19. Точечная проба зерна

Ндп. Выемка

Разовая проба

Проба зерна, отобранная от партии за один прием из одного места

20. Объединенная проба зерна

Ндп. Исходный образец

Общая проба

Проба зерна, состоящая из совокупности точечных проб

21. Среднесуточная проба зерна

Проба зерна, формируемая из объединенных проб, отобранных из нескольких однородных по качеству зерна партий, поступивших от одного хозяйства в течение оперативных суток

22. Средняя проба зерна

Ндп. Средний образец

Средний объем пробы

Часть объединенной или среднесуточной пробы, выделенная для определения качества зерна

23. Навеска зерна

Часть средней пробы, выделенная для определения отдельных показателей качества зерна

ПОКАЗАТЕЛИ КАЧЕСТВА ЗЕРНА

24. Зерновая примесь

Примесь неполноценных зерен основной культуры, а также зерен других культурных растений, допускаемая при приемке

25. Сорная примесь зерна

Примесь органического и неорганического происхождения, подлежащая удалению при использовании зерна по целевому назначению

26. Минеральная примесь зерна

Примесь минерального происхождения.

Примечание. К минеральной примеси относят: песок, комочки земли, гальку и др.

27. Органическая примесь зерна

Примесь растительного и животного происхождения.

Примечание. К органической примеси относят: части стеблей, стержней колоса, ости, пленки, части листьев и др.

28. Вредная примесь зерна

Примесь растительного происхождения, опасная для здоровья человека и животных

29. Металломагнитная примесь зерна

Примесь, обладающая свойством притягиваться к магниту

30. Трудноотделимая примесь зерна

Примесь, которая по своим физическим признакам близка к зерну основной культуры и которую трудно отделить на зерноочистительных машинах.

Примечание. К физическим признакам относят: форму, размеры, плотность, аэродинамические свойства

31. Поврежденное зерно

Зерно с измененным цветом оболочки и эндосперма в результате самосогревания, сушки и поражения болезнями

32. Испорченное зерно

Зерно с измененным цветом оболочки и явно испорченным эндоспермом

33. Потемневшее зерно

34. Щуплое зерно

Зерно невыполненное, сморщенное, легковесное, деформированное вследствие неблагоприятных условий развития и созревания

35. Битое зерно

Части зерна, образовавшиеся в результате механического воздействия

36. Давленое зерно

Целое зерно, но деформированное, сплющенное в результате механического воздействия

37. Морозобойное зерно

Ндп. Морозобитое зерно

Зерно, поврежденное заморозками в период созревания, сморщенное, деформированное, с сильно изменившимся цветом (белесоватое или потемневшее)

38. Обесцвеченное зерно

Зерно, в разной степени потерявшее под влиянием неблагоприятных условий развития, уборки или хранения естественный блеск и цвет

39. Проросшее зерно

Зерно с вышедшими за пределы покровов корешками или ростками

40. Недозрелое зерно

Зерно, не достигшее полной зрелости, с зеленоватым оттенком, легко деформирующееся при надавливании

41. Обрушенное зерно

Зерно с полностью или частично удаленными оболочками при обмолоте и других механических воздействиях

42. Головневое зерно

Ндп. Головневомараное зерно

Зерно, у которого запачкана бородка или часть поверхности спорами головни

43. Мешочки головни

Оболочки зерна, заполненные темной мажущейся массой спор головни неприятного селедочного запаха

44. Фузариозное зерно

Зерно, пораженное при созревании грибами из рода фузариум, щуплое, легковесное, морщинистое, белесое, иногда с пятнами оранжево-розового цвета

45. Розовоокрашенное зерно

Зерно выполненное, блестящее, с розовой пигментацией оболочек преимущественно в области зародыша

46. Красное зерно риса

Зерно риса, имеющее окраску поверхности семенных и плодовых оболочек от красного до буро-коричневого цвета

47. Глютинозное зерно риса

Зерно риса плотной консистенции, в разрезе стеаринообразное, однородное по цвету

48. Пожелтевшее зерно риса

Зерно риса с эндоспермом желтого цвета различной интенсивности

49. Влажность зерна

Физико-химически и механически связанная с тканями зерна вода, удаляемая в стандартных условиях определения

50. Натура зерна

Ндп. Натурный вес

Натурная масса

Масса установленного объема зерна

51. Пленчатость зерна

Массовая доля оболочек к массе необрушенного зерна, выраженная в процентах

52. Головневый запах зерна

Запах, напоминающий селедочный, появляющийся в результате загрязнения зерна спорами или мешочками головни

53. Плесневый запах зерна

Ндп. Плесневелый запах

Запах, появляющийся в результате развития на поверхности и внутри зерна плесневых грибов

54. Полынный запах зерна

Запах, появляющийся в результате контакта зерна с корзиночками полыни

55. Затхлый запах зерна

Запах, появляющийся при распаде тканей зерна под влиянием интенсивного развития микроорганизмов

56. Солодовый запах зерна

Запах, появляющийся при прорастании зерна

57. Посторонний запах зерна

Запах, появляющийся в результате сорбции зерном пахучих посторонних веществ.

Примечание. К постороннему запаху относят запах нефтепродуктов, фумигантов и др.

58. Цвет зерна

Окраска поверхности зерна

59.

Наличие в межзерновом пространстве или внутри отдельных зерен живых вредителей хлебных запасов - насекомых или клещей в любой стадии их развития

60.

Наличие в межзерновом пространстве живых вредителей хлебных запасов - насекомых или клещей в любой стадии их развития

61.

Наличие живых вредителей хлебных запасов в любой стадии их развития внутри отдельных зерен

62.

Зерно с выеденными насекомыми или клещами снаружи или внутри частично или полностью зародышем, оболочками и эндоспермом

63. Стекловидное зерно

Зерно плотной структуры с полностью гладкой и блестящей поверхностью разреза эндосперма, полностью просвечиваемое на специальном устройстве

64. Мучнистое зерно

Зерно рыхлой мучнистой структуры с непросвечиваемым на специальном устройстве эндоспермом

65. Частично стекловидное зерно

Зерно с частично стекловидной и частично мучнистой структурой эндосперма

66. Клейковина зерна

Комплекс белковых веществ зерна, способных при набухании в воде образовывать связную эластичную массу

67. Качество клейковины зерна

Совокупность физических свойств клейковины: растяжимость, упругость, эластичность

68.

Отношение количества проросших зерен в оптимальных условиях за установленный интервал времени к количеству проращиваемых зерен, выраженное в процентах

69. Жизнеспособность зерна

Отношение количества жизнеспособных зерен к общему количеству анализируемого зерна, выраженное в процентах.

Примечание. Жизнеспособность зерна определяют специальными методами

70. Зольность зерна

Отношение массы золы, состоящей из минеральных веществ и получаемой в результате сжигания размолотого зерна при определенной температуре в заданных условиях, к массе сжигаемого вещества, выраженное в процентах

71.Число падения

Время в секундах, необходимое для свободного падения штока-мешалки прибора под действием своей массы в клейстеризованной водно-мучной суспензии, характеризующее альфаамилазную активность зерна и продуктов его переработки

72.

Отношение массы зерна кукурузы к массе необмолоченных початков, выраженное в процентах

73. Масса 1000 зерен

АЛФАВИТНЫЙ УКАЗАТЕЛЬ ТЕРМИНОВ

Вес натурный

Влажность зерна

Выемка

Выход зерна из початков кукурузы

Жизнеспособность зерна

Запах зерна головневый

Запах зерна затхлый

Запах плесневелый

Запах зерна плесневый

Запах зерна полынный

Запах зерна посторонний

Запах зерна солодовый

Зараженность зерна вредителями

Зараженность зерна вредителями в скрытой форме

Зараженность зерна вредителями в явной форме

Зерно

Зерно битое

Зерно головневое

Зерно головневомараное

Зерно давленое

Зерно заготовляемое

Зерно испорченное

Зерно морозобойное

Зерно морозобитое

Зерно мучнистое

Зерно недозрелое

Зерно обесцвеченное

Зерно обрушенное

Зерно поврежденное

Зерно поставляемое

Зерно потемневшее

Зерно, поврежденное вредителями

Зерно проросшее

Зерно риса глютинозное

Зерно риса красное

Зерно риса пожелтевшее

Зерно розовоокрашенное

Зерно стекловидное

Зерно частично стекловидное

Зерно фузариозное

Зерно щуплое

Зольность зерна

Качество зерна

Качество клейковины зерна

Класс зерна

Клейковина зерна

Масса 1000 зерен

Масса натурная

Мешочки головни

Навеска зерна

Натура зерна

Норма зерна базисная

Норма зерна ограничительная

Норма показателя качества зерна

Образец исходный

Образец средний

Объем пробы средний

Партия зерна

Пленчатость зерна

Подтип зерна

Показатель качества зерна

Примесь зерна вредная

Примесь зерна металломагнитная

Примесь зерна минеральная

Примесь зерна органическая

Примесь зерна сорная

Примесь зерна трудноотделимая

Примесь зерновая

Проба зерна

Проба общая

Проба зерна объединенная

Проба разовая

Проба зерна среднесуточная

Проба зерна средняя

Проба зерна точечная

Пшеница сильная

Пшеница ценная

Свойство зерна

Сорт сельскохозяйственных культур

Способность прорастания зерна

Твердозерность

Тип зерна

Цвет зерна

Число падения


Электронный текст документа
подготовлен АО "Кодекс" и сверен по:
официальное издание
Зерновые культуры. Технические условия:
Сборник национальных стандартов. -
М.: Стандартинформ, 2010

ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ПЛОДОВ, ВИНОГРАДНИКОВ И КОРМОВЫХ КУЛЬТУР

1. Физико-механические свойства яблок, груш и приборы для их изучения.

1.1. Размерно-массовые показатели.

1.2. Сопротивление яблок статическому сжатию.

1.3. Сопротивление яблок динамическому воздействию, допустимая ударная нагрузка.

1.4. Сопротивление плодов циклическим нагрузкам.

1.5. Коэффициент трения скольжения и качения.

1.6. Прочность связи плода с веткой и плодоножкой.

2. Физико-механические свойства сливы.

3. Физико-механические свойства вишни и черешни.

4. Физико-механические свойства кормовых культур, сена, силоса, соломы.

5. Зеленые гидропонные корма (ЗКГ).

6. Приборы, применяемые для изучения физико-механических свойств.

1. Физико-механические свойства плодов

1.1.Размерно-массовые показатели

По форме плоды классифицируют на:

· плоские;

· округлые;

· удлиненные.

В зависимости от отношения

Где Д – максимальный диаметр;

Н – высота;

Плоские К›1

Округлые К1

Удлиненные К‹1

Разница между max и min диаметром повышается с увеличением размера плода (П).

Связь между средней массой и его максимальным диаметром

Где А и П – коэффициенты для каждого сорта

Ренет Симиренко А =0,00026 П =3,13

Ренет шампанский А =0,00026 П =3,07

Антоновка А =0,00037 П =3

Плотность: Симиренко – 0,816 г/см3

Антоновка – 0,792 г/см3

Насыпной вес 617…650 кг/м3.

Удельный вес яблок – 0,74…0,98 г/см3

Груш – 1,17…0,96 г/см3

Вишни – 0,78…1,43 г/см3

1.2. Сопротивление плодов статическому сжатию (плунжер размером 8 мм)

Усилие прокола кожицы: на боку – 0,086 кг/мм2

У основания – 0,1 кг/мм2

У вершины – 0,094 кг/мм2

Ударные нагрузки – маятниковым копром или сбрасыванием:

Энергия – … Дж.

Связь между площадью ушиба и величиной кинетической энергии соударения

Где Т – кинетическая энергия соударения, Дж

S – площадь ушиба на плоде, см2

Т 0 – кинетическая энергия, без следов ушиба.

Где К =4,5…4,6;

Т 0 = 4,0…5,4

Допустимая высота падения на жесткую поверхность 3…3,5 см, при которой не остается следов ушиба – Антоновка – 7…9.

На резину – 20…40 см

На яблоки – 5…7 см.

Коэффициент восстановления – К 0

При ударе о неподвижную поверхность

Где – скорость в начале удара;

Vконеч – скорость в конце удара.

К 0 – для яблока: деревянная поверхность – 0,20…0,27;

яблоко – яблоко – 0,32;

яблоко – слой стружки в 1 см - 0,27…0,34.

1.4. Сопротивление циклическим нагрузкам

После 10 тыс. циклов воздействия ударяющим телом упругие свойства плодов утрачиваются, глубина проникновения в мякоть почти равна эксцентриситету шатуна (А-1,2 мм, частота υ=35 Гц). Площадь нажима 1 см2 достигается у Антоновки при 2500 циклов.

1.5. Коэффициент трения качения Fk Определяется в плоскости наибольшего поперечного диаметра

Где Rn – радиус качения плода;

– угол наклона плоскости, при которой начинается качение.

С помощью линейки Желиговского определяют угол качения и коэффициент трения скольжения

1.6. Прочность связи с плодухой при влажности 86…89%, диаметр плода 52…69 мм, диаметр плодоножки 1,1…2,7 мм; усилие отрыва от 8 до 36Н (0,8…3,6 кг) – размер кроны – 5 м, схема посадки 5х5 м.

Для машинного сбора высоту штамба лучше делать не менее 100 см.

Обрезанные деревья имеют компактную шаровидную форму, под механизированный сбор. У деревьев без обрезки ярусов нет, ветви сгибаются под урожаем, требуют подпора, это затрудняет уборку с помощью комбайнов.

2.Слива

Плоды сливы имеют форму:

У ренклодов – круглые (индекс длины – 0,92…1,01)

У венгерок – продолговатые (индекс – 1,05…1,28)

Вес отдельных плодов – 7,6 …43 г

Удельный вес – 1,003-1,150 кг/м3

Насыпной вес – 670…719 кг/м3

Диаметр плодоножки-1,1…1,6;

Длина – 48…59 мм.

Прочность связи – усилие отрыва, кг (Н ):

Плода от плодоножки – 0,22 (2,2…11,4Н) …1,14 кг;

Плодоножки от ветки 0,54…1,14 кг (5,4…11,4Н)

Твердость прокола кожицы – 0,087…0,101 кг/мм2

– 0,87…1,01 Н/мм2

Сжатие плодов по толщине – 2,24…4,42 кг – ренклоды;

5,08…11,0 кг – венгерки.

При погрузке больше 0,59 кг начинает вытекать сок у плодов без плодоножки, а при 2,24 кг – появляется трещина.

Допускаемая высота свободного падения – 20…40 см – на алюминий и фанеру; 70…80 см – на почву; 100 см – по дереву.

Таблица-Твердости плодов сливы

Из таблицы следует, что требуется вывести сорта созревающие одинаково.

3. Вишня и черешня

Средний вес черешни в зависимости от сорта – 2,02…7,65 г

Вишни – 2,2 …5,5 г

Прочность связи плода с плодоножкой

Твердость плодов, кг/мм2 – 0,024…0,066 – черешня

0,012…0,022 – вишня

Высота деревьев – 6 м – черешня, вишни – 6,4 м

Размер штамба – 15…18 см

Диаметр кроны – вдоль ряда 4,2…7,1 м, поперек – 5,2…6,8 м

4.Физико-механические свойства кормовых культур (силос, сено)

Объемные и массовые показатели силоса

Валки люцерны (Вл – 54%), расстояние между валками 20 м, вес валка – 8,4 кг/м, объемный вес 71,5 кг/м3.

Коэффициент трения разнотравья свежескошенное

Влажность – 58…83% – по стали 0,64…1,47

Бобовые (влажность – 64…71%) – по стали 0,83…1,29

Злаковые (влажность – 54…62%) – по стали 0,56-0,65.

Объемный вес прессованного сена, кг/м3, при влажности 22…26% – 377 кг/м3.

5. Зеленые гидропонные корма (ЗКГ)

ЗГК – 10-дневные проростки культур (ячмень, овес, пшеницы, горох, и др. злаковых и бобовых культур). Их скашивают и всю массу вместе в корнями скармливают в качестве зеленой витаминной подкормки – зимой и ранней весной.

3…4 суток семена проращивают, а затем всходы на стеллажах в течение 7 суток освещают люминесцентными лампами при t-18°…20°С.

Плотность высева – 75…120 тыс. семян на 1 м2 (3…7 кг/м2 всхожих зерен), через 10 суток зеленного корма получают 30 кг/м2 (т. е. в 4…10 раз больше, чем в высеяно).

Полив строго дозирован.

Высота – кукурузы – 30…35 см

Пшеницы, овса, ячменя – 18…20 см

Влажность: 90…95% – в корнях

86…95% – в верхнем слое

Зеленый корм при скармливании имеет мало сухой массы (5…10%)

Коэффициент трения покоя – ячмень – по стали – 0,85…0,92

Коэффициент трения движения – 0,56…0,93.

6. Приборы, применяемые для изучения физико-механических свойств

Экстензометр – ЭТ-5

ДиНамограф-работомер ДР-100

Предназначен для измерения сопротивления растений резанию и изгибу.

Работа, затрачиваемая на деформацию образца и возникающие усилия устанавливаются из диаграмм. – запись прибора "путь – сила".

Максимальная сила сопротивления – 120 кг. Сменные пружины позволяют измерить силы 10, 30, 60, 100 и 120 кг.

Принцип, как и твердомер Ревякина, только бумага для записи вращается с барабана пропорционально перемещению (поступательному) рабочего органа.

Динамограф малых усилий Д-10.

Прибор для замера усилий сжатия-растяжения до 10 кг – 3 диапазона измерения:

I – 0,1-1,0 кг

II – 0,3-3 кг

III – 1-10 кг.

Дисковый прибор трения ДПТ – позволяет измерить силы трения от 50 до 1000 г

Прибор ПТСМ – для определения коэффициента трения сыпучих материалов.

Ротаметрический порционный пневмоклассификатор РПП-30 . Предназначен для изучения аэродинамических свойств семян и разделения семенной смеси на компоненты, а также для оценки качества работы воздушных каналов зерноочистных машин. Вакуум создается вентилятором.

Литература

1. Четвертаков А. В., Брутер И. М., С. Б. Бранд. Машины для товарной обработки плодов. – М.: Машиностроение, 1977.

2. Методика изучения физико-механических свойств с.-х. растений. – М.: ВИСХОМ, 1960.

3. Справочник конструктора с.-х. машин. Том 1. – М.: Машиностроение, 1967.

4. Научные труды ученых университета.