Отношения и пропорции. Пропорции Как составляются пропорции

Пропорция - это математическое выражение, в котором два или более числа сравниваются друг с другом. В пропорциях могут сравниваться абсолютные величины и количества или части более крупного целого. Пропорции можно записывать и вычислять несколькими различными способами, однако в основе лежит один и тот же общий принцип.

Шаги

Часть 1

Что такое пропорция

    Узнайте, для чего служат пропорции. Пропорции используются как в научных исследованиях, так и в повседневной жизни для сравнения различных величин и количеств. В простейшем случае сравниваются два числа, но пропорция может включать в себя любое количество величин. При сравнении двух или большего количества величин всегда можно применить пропорцию. Знание того, как величины соотносятся друг с другом, позволяет, к примеру, записать химические формулы или рецепты различных блюд. Пропорции пригодятся вам для самых разных целей.

  1. Ознакомьтесь с тем, что означает пропорция. Как отмечено выше, пропорции позволяют определить соотношение между двумя и более величинами. Например, если для приготовления печенья необходимо 2 стакана муки и 1 стакан сахара, мы говорим, что между количеством муки и сахара существует пропорция (отношение) 2 к 1.

    • С помощью пропорций можно показать, как различные величины относятся друг к другу, даже если они не связаны между собой непосредственно (в отличие от рецепта). Например, если в классе пять девочек и десять мальчиков, отношение количества девочек к числу мальчиков составляет 5 к 10. В этом случае одно число не зависит от другого и не связано с ним непосредственно: пропорция может измениться, если кто-то покинет класс или наоборот, в него придут новые ученики. Пропорция просто позволяет сравнить две величины.
  2. Обратите внимание на различные способы выражения пропорций. Пропорции можно записать словами или использовать математические символы.

    • В обыденной жизни пропорции чаще выражают словами (как приведено выше). Пропорции используются в самым разных областях, и если ваша профессия не связана с математикой или другой наукой, чаще всего вам будет попадаться именно такой способ записи пропорций.
    • Пропорции часто записывают посредством двоеточия. При сравнении двух чисел с помощью пропорции их можно записать через двоеточие, например 7:13. Если сравнивается более двух чисел, двоеточие ставится последовательно между каждыми двумя числами, например 10:2:23. В приведенном выше примере для класса мы сравниваем количество девочек и мальчиков, причем 5 девочек: 10 мальчиков. Таким образом, в этом случае пропорцию можно записать в виде 5:10.
    • Иногда при записи пропорций используют знак дроби. В нашем примере с классом отношение 5 девочек к 10 мальчикам запишется как 5/10. В этом случае не следует читать знак “делить” и необходимо помнить, что это не дробь, а соотношение двух разных чисел.

    Часть 2

    Операции с пропорциями
    1. Приведите пропорцию к простейшей форме. Пропорции можно упрощать, как и дроби, за счет сокращения входящих в них членов на общий делитель . Чтобы упростить пропорцию, поделите все входящие в нее числа на общие делители. Однако при этом не следует забывать о первоначальных величинах, которые привели к данной пропорции.

      • В приведенном выше примере с классом из 5 девочек и 10 мальчиков (5:10) обе стороны пропорции имеют общий делитель 5. Поделив обе величины на 5 (наибольший общий делитель), получаем отношение 1 девочка на 2 мальчика (то есть 1:2). Однако при использовании упрощенной пропорции следует помнить о первоначальных числах: в классе не 3 ученика, а 15. Сокращенная пропорция лишь показывает отношение между количеством девочек и мальчиков. На каждую девочку приходится два мальчика, но это отнюдь не означает, что в классе 1 девочка и 2 мальчика.
      • Некоторые пропорции не поддаются упрощениям. Например, отношение 3:56 нельзя сократить, так как входящие в пропорцию величины не имеют общего делителя: 3 является простым числом, а 56 не делится на 3.
    2. Для “масштабирования” пропорции можно умножать или делить. Пропорциями часто пользуются для того, чтобы увеличить или уменьшить числа в пропорции друг к другу. Умножение или деление всех входящих в пропорцию величин на одно и то же число сохраняет неизменным отношение между ними. Таким образом, пропорции можно умножать или делить на “масштабный” фактор.

      • Предположим, пекарю необходимо утроить количество выпекаемого печенья. Если мука и сахар берутся в пропорции 2 к 1 (2:1), для увеличения количества печенья в три раза данную пропорцию следует умножить на 3. В результате получится 6 стаканов муки на 3 стакана сахара (6:3).
      • Можно поступать и наоборот. Если пекарю необходимо уменьшить количество печенья в два раза, следует обе части пропорции поделить на 2 (или умножить на 1/2). В результате получится 1 стакан муки на полстакана (1/2, или 0,5 стакана) сахара.
    3. Научитесь по двум эквивалентным пропорциям находить неизвестную величину. Еще одной распространенной задачей, для решения которой широко используются пропорции, является нахождение неизвестной величины в одной из пропорций, если дана аналогичная ей вторая пропорция. Правило умножения дробей значительно упрощает эту задачу. Запишите каждую пропорцию в виде дроби, затем приравняйте эти дроби друг другу и найдите искомую величину.

      • Предположим, у нас есть небольшая группа учеников из 2 мальчиков и 5 девочек. Если мы хотим сохранить соотношение между мальчиками и девочками, сколько мальчиков должно быть в классе, в который входит 20 девочек? Для начала составим обе пропорции, одна из которых содержит неизвестную величину: 2 мальчика: 5 девочек = x мальчиков: 20 девочек. Если мы запишем пропорции в виде дробей, у нас получится 2/5 и x/20. После умножения обеих частей равенства на знаменатели получаем уравнение 5x=40; делим 40 на 5 и в итоге находим x=8.

    Часть 3

    Выявление ошибок
    1. При операциях с пропорциями избегайте сложения и вычитания. Многие задачи с пропорциями звучат подобно следующей: “Для приготовления блюда требуется 4 картофелины и 5 морковок. Если вы хотите использовать 8 картофелин, сколько морковок вам понадобится?” Многие допускают ошибку и пытаются просто сложить соответствующие величины. Однако для сохранения прежней пропорции следует умножать, а не складывать. Вот ошибочное и правильное решение данной задачи:

      • Неправильный метод: “8 - 4 = 4, то есть в рецепте добавилось 4 картофелины. Значит, необходимо взять прежние 5 морковок и прибавить к ним 4, чтобы... что-то не то! С пропорциями действуют по-другому. Попробуем еще раз“.
      • Правильный метод: “8/4 = 2, то есть количество картофелин выросло в 2 раза. Это значит, что и число морковок следует умножить на 2. 5 x 2 = 10, то есть в новом рецепте необходимо использовать 10 морковок“.
    2. Переведите все значения в одинаковые единицы измерения. Иногда проблема возникает из-за того, что величины имеют разные единицы измерения. Прежде чем записывать пропорцию, переведите все величины в одинаковые единицы измерения. Например:

      • У дракона есть 500 граммов золота и 10 килограммов серебра. Каково соотношение золота к серебру в драконьих запасах?
      • Граммы и килограммы являются различными единицами измерения, поэтому их следует унифицировать. 1 килограмм = 1 000 граммов, то есть 10 килограммов = 10 килограммов x 1 000 граммов/1 килограмм = 10 x 1 000 граммов = 10 000 граммов.
      • Итак, дракон имеет 500 граммов золота и 10 000 граммов серебра.
      • Отношение массы золота к массе серебра составляет 500 граммов золота/10 000 граммов серебра = 5/100 = 1/20.
    3. Записывайте в решении задачи единицы измерения. В задачах с пропорциями намного легче найти ошибку в том случае, если записывать после каждой величины ее единицы измерения. Помните о том, что если в числителе и знаменателе стоят одинаковые единицы измерения, они сокращаются. После всех возможных сокращений в ответе должны получиться правильные единицы измерения.

      • Например: даны 6 коробок, и в каждых трех коробках находится 9 шариков; сколько всего шариков?
      • Неправильный метод: 6 коробок х 3 коробки/9 шариков = ... Хм, ничего не сокращается, и в ответе выходит “коробки x коробки / шарики“. Это не имеет смысла.
      • Правильный метод: 6 коробок х 9 шариков/3 коробки = 6 коробок х 3 шарика/1 коробка = 6 х 3 шарика/1 = 18 шариков.

Пропо́рция равенство двух отношений, т. е. равенство вида a: b = c: d , или, в других обозначениях, равенство

Если a : b = c : d , то a и d называют крайними , а b и c - средними членами пропорции.

От « пропорции» никуда не деться, без нее не обойтись во многих задачах. Выход только один – разобраться с этим отношением и пользоваться пропорцией как палочкой-выручалочкой.

Прежде чем приступать к рассмотрению задач на пропорцию, важно вспомнить основное правило пропорции:

В пропорции

произведение крайних членов равно произведению средних

Если какая-то величина в пропорции неизвестна, ее легко будет найти, опираясь на это правило.

Например,



То есть неизвестная величина пропорции – значении дроби, в знаменателе которой – то число, которое стоит напротив неизвестной величины , в числителе – произведение оставшихся членов пропорции (независимо от того, где эта неизвестная величина стоит).

Задача 1.

Из 21 кг хлопкового семени получили 5,1 кг масла. Сколько масла получится из 7 кг хлопкового семени?

Решение:

Мы понимаем, что уменьшение веса семени во сколько-то раз, влечет за собой уменьшение веса получаемого масла во столько же раз. То есть величины связаны прямой зависимостью.

Заполним таблицу:

Неизвестная величина – значение дроби , в знаменателе которой – 21 – величина, стоящая напротив неизвестного в таблице, в числителе – произведение оставшихся членов таблицы-пропорции.

Поэтому получаем, что из 7 кг семени выйдет 1,7 кг масла.

Чтобы правильно заполнять таблицу, важно помнить правило:

Одинаковые наименования нужно записывать друг под другом. Проценты записываем под процентами, килограммы под килограммами и т.д

Задача 2.

Перевести в радианы.

Решение:

Мы знаем, что . Заполним таблицу:

Ответ:

Задача 3.

На клетчатой бумаге изображён круг. Какова площадь круга, если площадь заштрихованного сектора равна 27?

Решение:


Хорошо видно, что незаштрихованный сектор соответствует углу в (например, потому, что стороны сектора образованы биссектрисами двух смежных прямых углов). А поскольку вся окружность составляет , то на закрашенный сектор приходится .

Составим таблицу:

Откуда площадь круга – есть .

Ответ:

Задача 4. После того, как было вспахано 82% всего поля, осталось вспахать еще 9 га. Какова площадь всего поля?

Решение:

Все поле составляет 100%, и поскольку вспахано 82%, то осталось вспахать 100%-82%=18% поля.

Заполняем таблицу:

Откуда получаем, что все поле составляет (га).

Ответ:

А следующая задача – с засадой.

Задача 5.

Расстояние между двумя городами пассажирский поезд прошел со скоростью 80км/ч за 3 часа. За сколько часов товарный поезд пройдет то же расстояние со скоростью 60 км/ч ?

Решение:


Если вы будете решать эту задачу аналогично предыдущей, то получите следующее:

время, которое потребуется товарному поезду, чтобы пройти то же расстояние, что и пассажирским, есть часа. То есть, получается, что идя с меньшей скоростью, он преодолевает (за одно и тоже время) расстояние быстрее, нежели поезд с большей скоростью.

В чем ошибка рассуждений?

До сих пор мы рассматривали задачи, где величины были прямопропорциональны друг другу , то есть рост одной величины во сколько-то раз, дает рост связанной с ней второй величины во столько же раз (аналогично с уменьшением, конечно). А здесь у нас другая ситуация: скорость пассажирского поезда больше скорости товарного во сколько-то раз, а вот время, требуемое на преодоление одного и того же расстояния, требуется пассажирскому поезду меньшее во столько же раз, нежели товарному поезду. То есть величины друг другу обратно пропорциональны .

Схему, которой мы пользовались до сих пор, надо чуть изменить в данном случае.

Решение:

Рассуждаем так:

Пассажирский поезд со скоростью 80 км/ч ехал 3 ч, следовательно, он проехал км. А значит товарный поезд это же расстояние преодолеет за ч.

То есть, если бы мы составляли пропорцию, нам следовало бы поменять местами ячейки правой колонки предварительно. Получили бы: ч.

Ответ: .

Поэтому, пожалуйста, будьте внимательны при составлении пропорции. Разберитесь сначала, с какой зависимостью имеете дело – с прямой или обратной.

§ 125. Понятие о пропорции.

Пропорцией называется равенство двух отношений. Вот примеры равенств, называемых пропорциями:

Примечание. Наименования величин в пропорциях не указаны.

Пропорции принято читать следующим образом: 2 так относится к 1 (единице), как 10 относится к 5 (первая пропорция). Можно читать иначе, например: 2 во столько раз больше 1, во сколько раз 10 больше 5. Третью пропорцию можно прочесть так: - 0,5 во столько раз меньше 2, во сколько раз 0,75 меньше 3.

Числа, входящие в пропорцию, называются членами пропорции . Значит, пропорция состоит из четырёх членов. Первый и последний члены, т. е. члены, стоящие по краям, называются крайними , а члены пропорции, находящиеся в середине, называются средними членами. Значит, в первой пропорции числа 2 и 5 будут крайними членами, а числа 1 и 10 - средними членами пропорции.

§ 126. Основное свойство пропорции.

Рассмотрим пропорцию:

Перемножим отдельно её крайние и средние члены. Произведение крайних 6 4 = 24, произведение средних 3 8 = 24.

Рассмотрим другую пропорцию: 10: 5 = 12: 6. Перемножим и здесь отдельно крайние и средние члены.

Произведение крайних 10 6 = 60, произведение средних 5 12 = 60.

Основное свойство пропорции: произведение крайних членов пропорции равно произведению средних её членов.

В общем виде основное свойство пропорции записывается так: ad = bc .

Проверим его на нескольких пропорциях:

1) 12: 4 = 30: 10.

Пропорция эта верна, так как равны отношения, из которых она составлена. Вместе с тем, взяв произведение крайних членов пропорции (12 10) и произведение средних её членов (4 30), мы увидим, что они равны между собой, т. е.

12 10 = 4 30.

2) 1 / 2: 1 / 48 = 20: 5 / 6

Пропорция верна, в чём легко убедиться, упростив первое и второе отношения. Основное свойство пропорции примет вид:

1 / 2 5 / 6 = 1 / 48 20

Нетрудно убедиться в том, что если мы напишем такое равенство, у которого в левой части стоит произведение двух каких-нибудь чисел, а в правой части произведение двух других чисел, то из этих четырёх чисел можно составить пропорцию.

Пусть у нас имеется равенство, в которое входят четыре числа, попарно перемноженные:

эти четыре числа могут быть членами пропорции, которую нетрудно написать, если принять первое произведение за произведение крайних членов, а второе - за произведение средних. Изданного равенства можно составить, например, такую пропорцию:

Вообще, из равенства ad = bc можно получить следующие пропорции:

Проделайте самостоятельно следующее упражнение. Имея произведение двух пар чисел, напишите пропорцию, соответствующую каждому равенству:

а) 1 6 = 2 3;

б) 2 15 = б 5.

§ 127. Вычисление неизвестных членов пропорции.

Основное свойство пропорции позволяет вычислить любой из членов пропорции, если он неизвестен. Возьмём пропорцию:

х : 4 = 15: 3.

В этой пропорции неизвестен один крайний член. Мы знаем, что во всякой пропорции произведение крайних членов равно произведению средних членов. На этом основании мы можем написать:

x 3 = 4 15.

После умножения 4 на 15 мы можем переписать это равенство так:

х 3 = 60.

Рассмотрим это равенство. В нём первый сомножитель неизвестен, второй сомножитель известен и произведение известно. Мы знаем, что для нахождения неизвестного сомножителя достаточно произведение разделить на другой (известный) сомножитель. Тогда получится:

х = 60: 3, или х = 20.

Проверим найденный результат подстановкой числа 20 вместо х в данную пропорцию:

Пропорция верна.

Подумаем, какие действия нам пришлось выполнить для вычисления неизвестного крайнего члена пропорции. Из четырёх членов пропорции нам был неизвестен только один крайний; два средних и второй крайний были известны. Для нахождения крайнего члена пропорции мы сначала перемножили средние члены (4 и 15), а затем найденное произведение разделили на известный крайний член. Сейчас мы покажем, что действия не изменились бы, если бы искомый крайний член пропорции стоял не на первом месте, а на последнем. Возьмём пропорцию:

70: 10 = 21: х .

Запишем основное свойство пропорции: 70 х = 10 21.

Перемножив числа 10 и 21, перепишем равенство в таком виде:

70 х = 210.

Здесь неизвестен один сомножитель, для его вычисления достаточно произведение (210) разделить на другой сомножитель (70),

х = 210: 70; х = 3.

Таким образом, мы можем сказать, что каждый крайний член пропорции равен произведению средних, делённому на другой крайний.

Перейдём теперь к вычислению неизвестного среднего члена. Возьмём пропорцию:

30: х = 27: 9.

Напишем основное свойство пропорции:

30 9 = х 27.

Вычислим произведение 30 на 9 и переставим части последнего равенства:

х 27 = 270.

Найдём неизвестный сомножитель:

х = 270: 27, или х = 10.

Проверим подстановкой:

30: 10 = 27: 9. Пропорция верна.

Возьмём ещё одну пропорцию:

12: б = х : 8. Напишем основное свойство пропорции:

12 . 8 = 6 х . Перемножая 12 и 8 и переставляя части равенства, получим:

6 х = 96. Находим неизвестный сомножитель:

х = 96: 6, или х = 16.

Таким образом, каждый средний член пропорции равен произведению крайних, делённому на другой средний.

Найдите неизвестные члены следующих пропорций:

1) а : 3= 10:5; 3) 2: 1 / 2 = x : 5;

2) 8: b = 16: 4; 4) 4: 1 / 3 = 24: х .

Два последних правила в общем виде можно записать так:

1) Если пропорция имеет вид:

х: а = b: с , то

2) Если пропорция имеет вид:

а: х = b: с , то

§ 128. Упрощение пропорции и перестановка её членов.

В настоящем параграфе мы выведем правила, позволяющие упрощать пропорцию в том случае, когда в неё входят большие числа или дробные члены. K числу преобразований, не нарушающих пропорцию, относятся следующие:

1. Одновременное увеличение или уменьшение обоих членов любого отношения в одинаковое число раз.

П р и м е р. 40: 10 = 60: 15.

Увеличив в 3 раза оба члена первого отношения, получим:

120:30 = 60: 15.

Пропорция не нарушилась.

Уменьшив в 5 раз оба члена второго отношения, получим:

Получили опять правильную пропорцию.

2. Одновременное увеличение или уменьшение обоих предыдущих или обоих последующих членов в одинаковое число раз.

Пример. 16:8 = 40:20.

Увеличим в 2 раза предыдущие члены обоих отношений:

Получили правильную пропорцию.

Уменьшим в 4 раза последующие члены обоих отношений:

Пропорция не нарушилась.

Два полученных вывода можно кратко высказать так: Пропорция не нарушится, если мы одновременно увеличим или уменьшим в одинаковое число раз любой крайний член пропорции и любой средний.

Например, уменьшив в 4 раза 1-й крайний и 2-й средний члены пропорции 16:8 = 40:20, получим:

3. Одновременное увеличение или уменьшение всех членов пропорции в одинаковое число раз. Пример. 36:12 = 60:20. Увеличим все четыре числа в 2 раза:

Пропорция не нарушилась. Уменьшим все четыре числа в 4 раза:

Пропорция верна.

Перечисленные преобразования дают возможность, во-первых, упрощать пропорции, а во-вторых, освобождать их от дробных членов. Приведём примеры.

1) Пусть имеется пропорция:

200: 25 = 56: x .

В ней членами первого отношения являются сравнительно большие числа, и если бы мы пожелали найти значение х , то нам пришлось бы выполнять вычисления над этими числами; но мы знаем, что пропорция не нарушится, если оба члена отношения разделить на одно и то же число. Разделим каждый из них на 25. Пропорция примет вид:

8:1 = 56: x .

Мы получили, таким образом, более удобную пропорцию, из которой х можно найти в уме:

2) Возьмём пропорцию:

2: 1 / 2 = 20: 5.

В этой пропорции есть дробный член (1 / 2), от которого можно освободиться. Для этого придётся умножить этот член, например, на 2. Но о д и н средний член пропорции мы не имеем права увеличивать; нужно вместе с ним увеличить какой-нибудь из крайних членов; тогда пропорция не нарушится (на основании первых двух пунктов). Увеличим первый из крайних членов

(2 2) : (2 1 / 2) = 20: 5, или 4: 1 = 20:5.

Увеличим второй крайний член:

2: (2 1 / 2) = 20: (2 5), или 2: 1 = 20: 10.

Рассмотрим ещё три примера на освобождение пропорции от дробных членов.

Пример 1. 1 / 4: 3 / 8 = 20:30.

Приведём дроби к общему знаменателю:

2 / 8: 3 / 8 = 20: 30.

Умножив на 8 оба члена первого отношения, получим:

Пример 2. 12: 15 / 14 = 16: 10 / 7 . Приведём дроби к общему знаменателю:

12: 15 / 14 = 16: 20 / 14

Умножим оба последующих члена на 14, получим: 12:15 = 16:20.

Пример 3. 1 / 2: 1 / 48 = 20: 5 / 6 .

Умножим все члены пропорции на 48:

24: 1 = 960: 40.

При решении задач, в которых встречаются какие-нибудь пропорции, часто приходится для разных целей переставлять члены пропорции. Рассмотрим, какие перестановки являются законными, т. е. не нарушающими пропорции. Возьмём пропорцию:

3: 5 = 12: 20. (1)

Переставив в ней крайние члены, получим:

20: 5 = 12:3. (2)

Переставим теперь средние члены:

3:12 = 5: 20. (3)

Переставим одновременно и крайние, и средние члены:

20: 12 = 5: 3. (4)

Все эти пропорции верны. Теперь поставим первое отношение на место второго, а второе - на место первого. Получится пропорция:

12: 20 = 3: 5. (5)

В этой пропорции мы сделаем те же перестановки, какие делали раньше, т. е. переставим сначала крайние члены, затем средние и, наконец, одновременно и крайние, и средние. Получатся ещё три пропорции, которые тоже будут справедливыми:

5: 20 = 3: 12. (6)

12: 3 = 20: 5. (7)

5: 3 = 20: 12. (8)

Итак, из одной данной пропорции путём перестановки можно получить ещё 7 пропорций, что вместе с данной составляет 8 пропорций.

Особенно легко обнаруживается справедливость всех этих пропорций при буквенной записи. Полученные выше 8 пропорций принимают вид:

а: b = с: d; c: d = a: b ;

d: b = с: a; b: d = a: c;

a: c = b: d; c: a = d: b;

d: c = b: a; b: a = d: c.

Легко видеть, что в каждой из этих пропорций основное свойство принимает вид:

ad = bc.

Таким образом, указанные перестановки не нарушают справедливости пропорции и ими можно пользоваться в случае надобности.

Отношение двух чисел

Определение 1

Отношением двух чисел является их частное.

Пример 1

    отношение $18$ к $3$ может быть записано как:

    $18\div 3=\frac{18}{3}=6$.

    отношение $5$ к $15$ может быть записано как:

    $5\div 15=\frac{5}{15}=\frac{1}{3}$.

С помощью отношения двух чисел можно показать:

  • во сколько раз одно число превышает другое;
  • какую часть представляет одно число от другого.

При составлении отношения двух чисел в знаменателе дроби записывают то число, с которым проводится сравнение.

Чаще всего такое число следует после слов «по сравнению с...» или предлога «к...».

Вспомним основное свойство дроби и применим его к отношению:

Замечание 1

При умножении или делении обоих членов отношения на одно и то же число, отличное от нуля, получаем отношение, которое равно исходному.

Рассмотрим пример, который иллюстрирует использование понятия отношения двух чисел.

Пример 2

Количество осадков в предыдущем месяце составляло $195$ мм, а в текущем месяце – $780$ мм. Во сколько раз увеличилось количество осадков в текущем месяце по сравнению с предыдущим месяцем?

Решение .

Составим отношение количества осадков в текущем месяце к количеству осадков в предыдущем месяце:

$\frac{780}{195}=\frac{780\div 5}{195\div 5}=\frac{156\div 3}{39\div 3}=\frac{52}{13}=4$.

Ответ : количество осадков в текущем месяце в $4$ раза больше, чем в предыдущем.

Пример 3

Найти сколько раз число $1 \frac{1}{2}$ содержится в числе $13 \frac{1}{2}$.

Решение .

$13 \frac{1}{2}\div 1 \frac{1}{2}=\frac{27}{2}\div \frac{3}{2}=\frac{27}{2} \cdot \frac{2}{3}=\frac{27}{3}=9$.

Ответ : $9$ раз.

Понятие пропорции

Определение 2

Пропорцией называется равенство двух отношений:

$a\div b=c\div d$

$\frac{a}{b}=\frac{c}{d}$.

Пример 4

$3\div 6=9\div 18$, $5\div 15=9\div 27$, $4\div 2=24\div 12$,

$\frac{8}{2}=\frac{36}{9}$, $\frac{10}{40}=\frac{9}{36}$, $\frac{15}{75}=\frac{1}{5}$.

В пропорции $\frac{a}{b}=\frac{c}{d}$ (или $a:b = с\div d$) числа a и d называются крайними членами пропорции, а числа $b$ и $c$ – средними членами пропорции.

Правильную пропорцию можно преобразовать следующим образом:

Замечание 2

Произведение крайних членов правильной пропорции равно произведению средних членов:

$a \cdot d=b \cdot c$.

Данное утверждение является основным свойством пропорции .

Справедливо и обратное утверждение:

Замечание 3

Если произведение крайних членов пропорции равно произведению ее средних членов, то пропорция правильная.

Замечание 4

Если в правильной пропорции переставить средние члены или крайние члены, то пропорции, которые получатся, также будут правильными.

Пример 5

$6\div 3=18\div 9$, $15\div 5=27\div 9$, $2\div 4=12\div 24$,

$\frac{2}{8}=\frac{9}{36}$, $\frac{40}{10}=\frac{36}{9}$, $\frac{75}{15}=\frac{5}{1}$.

С помощью данного свойства легко из пропорции найти неизвестный член, если известны остальные три:

$a=\frac{b \cdot c}{d}$; $b=\frac{a \cdot d}{c}$; $c=\frac{a \cdot d}{b}$; $d=\frac{b \cdot c}{a}$.

Пример 6

$\frac{6}{a}=\frac{16}{8}$;

$6 \cdot 8=16 \cdot a$;

$16 \cdot a=6 \cdot 8$;

$16 \cdot a=48$;

$a=\frac{48}{16}$;

Пример 7

$\frac{a}{21}=\frac{8}{24}$;

$a \cdot 24=21 \cdot 8$;

$a \cdot 24=168$;

$a=\frac{168}{24}$;

$3$ садовника – $108$ деревьев;

$x$ садовников – $252$ дерева.

Составим пропорцию:

$\frac{3}{x}=\frac{108}{252}$.

Воспользуемся правилом нахождения неизвестного члена пропорции:

$b=\frac{a \cdot d}{c}$;

$x=\frac{3 \cdot 252}{108}$;

$x=\frac{252}{36}$;

Ответ : для обрезки $252$ деревьев потребуется $7$ садовников.

Чаще всего свойства пропорции используют на практике в математических вычислениях в случаях, когда необходимо вычислить значение неизвестного члена пропорции, если известны значения трех остальных членов.

Основные свойства пропорций

  • Обращение пропорции. Если a : b = c : d , то b : a = d : c
  • Перемножение членов пропорции крест-накрест. Если a : b = c : d , то ad = bc .
  • Перестановка средних и крайних членов. Если a : b = c : d , то
a : c = b : d (перестановка средних членов пропорции), d : b = c : a (перестановка крайних членов пропорции).
  • Увеличение и уменьшение пропорции. Если a : b = c : d , то
(a + b ) : b = (c + d ) : d (увеличение пропорции), (a b ) : b = (c d ) : d (уменьшение пропорции).
  • Составление пропорции сложением и вычитанием. Если a : b = c : d , то
(a + с ) : (b + d ) = a : b = c : d (составление пропорции сложением), (a с ) : (b d ) = a : b = c : d (составление пропорции вычитанием).

Составные (непрерывные) пропорции

Историческая справка

Литература

  • ван дер Варден, Б. Л. Пробуждающаяся наука. Математика Древнего Египта, Вавилона и Греции. - пер. с голл. И. Н. Веселовского - М.: ГИФМЛ, 1959

См. также

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Пропорция" в других словарях:

    - (лат., от pro для, и portio часть, порция). 1) соразмерность, согласование. 2) отношение частей между собою и к их целому. Отношение величин между собою. 3) в архитектуре: удачные размеры. Словарь иностранных слов, вошедших в состав русского… … Словарь иностранных слов русского языка

    ПРОПОРЦИЯ, пропорции, жен. (книжн.) (лат. proportio). 1. Соразмерность, определенное соотношение частей между собой. Правильные пропорции частей тела. Смешать сахар с желтком в такой пропорции: две ложки сахара на один желток. 2. Равенство двух… … Толковый словарь Ушакова

    Отношение, соотношение; соразмерность. Ant. диспропорция Словарь русских синонимов. пропорция см. соотношение Словарь синонимов русского языка. Практический справочник. М.: Русский язык. З. Е. Александрова … Словарь синонимов

    Жен., франц. соразмерность; величина или количество, отвечающее чему либо; | мат. равенство содержания, одинаковые отношения двойной четы цифры; арифметическая, если второе число на столько же более или менее, первого, на сколько четвертое против … Толковый словарь Даля

    - (лат. proportio) в математике равенство между двумя отношениями четырех величин: a/b =c/d … Большой Энциклопедический словарь

    ПРОПОРЦИЯ, в математике равенство между двумя отношениями четырех величин: a/b=с/d. Непрерывной пропорцией называют группу из трех или более величин, каждая из которых имеет одно и то же отношение к последующей величине, как, например, в… … Научно-технический энциклопедический словарь

    ПРОПОРЦИЯ, и, жен. 1. В математике: равенство двух отношений (в 3 знач.). 2. Определённое соотношение частей между собой, соразмерность. П. в частях здания. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    Англ. proportion; нем. Proportion. 1. Соразмерность, определенное соотношение частей целого между собой. 2. Равенство двух отношений. Antinazi. Энциклопедия социологии, 2009 … Энциклопедия социологии

    пропорция - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN ratedegreeDdegdrratio … Справочник технического переводчика

    ПРОПОРЦИЯ - равенство двух (см.), т.е. а: b = с: d, где а, b, с, d члены пропорции, причём а и d крайние, b и с средине. Основное свойство пропорции: произведение крайних членов пропорции равно произведению средних: ad = bс … Большая политехническая энциклопедия

    И; ж. [лат. proportio] 1. Соразмерное соотношение частей между собой. Соблюсти все архитектурные пропорции. Идеальная п. частей тела. 2. Определённое количественное соотношение между чем л. Нарушить пропорцию. Смешав ягоды с песком в пропорции… … Энциклопедический словарь