Сорбционные фильтры для очистки воды – виды и принцип работы. Сорбционная очистка сточных вод Сорбционный метод преимущества

Сорбционные методы

Сорбционные методы основываются на поглощении радионуклидов твёрдой фазы по механизмам ионного обмена, адсорбции, кристаллизации и другие .

Сорбция проводится в динамических и статистических условиях. При динамической сорбции фильтрование исходных жидких отходов проводится непрерывно через сорбент, а при статической сорбции проводится временный контакт двух фаз при перемешивании с дальнейшим разделением .

Динамическая сорбция проводится в намывных или насыпных фильтрах. Отличие заключается в том, что в насыпных фильтрах применяют сорбенты в виде зернистого прочного материала; в намывных фильтрах же в качестве сорбента применяют неорганические и органические материалы искусственного и органического происхождения .

Для очистки жидких радиоактивных отходов от радионуклидов применяют сорбенты (иониты) таких типов, как КБ-51-7, КУ-2-8 (сильнокислый катионит), АВ-17-8 (сильноосновный анионит), АН-31 и АН-2ФН (слабоосновные аниониты), вермикулит. Сорбенты выпускают в виде гранул, которые пере применением замачивают в специальном растворе для активации. Все перечисленные сорбенты обладают высокими коэффициентами очистки и хорошими фильтрующими свойствами .

Ионообменные гетерогенные реакции обратимы, что позволяет осуществлять регенерацию сорбента, но обуславливает создание условий для вымывания радионуклидов при хранении отработанного сорбента. Обменная ёмкость сорбента почти вся используется на сорбцию макрокомпонентов - солей, из-за их схожести со свойствами микрокомпонентов. Тогда для того, чтобы протекала сорбция микрокомпонентов (радионуклидов), необходимо проводить предварительное обессоливание. Иначе это будет приводить к частым регенерациям сорбента и, следовательно, повышением стоимости очистки .

Жидкие радиоактивные отходы с высокой засолённостью невыгодно очищать органическими сорбентами из-за того, что при регенерации сорбента требуется 2-2,5 кратный избыток щёлочи и кислоты (идёт удорожание очистки) .

Ситуация предстаёт обратная для радионуклидов, у которых свойства отличны от свойств макрокомпонентов. Многовалентные радионуклиды хорошо сорбируются на катионите в присутствии натрий-ионов. Поэтому находящиеся в жидких радиоактивных отходах натрий-ионы не сорбируются, что приводит к заметному снижению объёмов регенератора, вторичных отходов и частоты регенерации .

Применение синтетических органических сорбентов позволяет удалить из жидких радиоактивных отходов всё радионуклиды в ионной форме. Но такие сорбенты имеют некоторые ограничения по применению, которые перерастают в серьёзные недостатки. При использовании таких сорбентов радионуклиды в молекулярной и коллоидной форме из жидких радиоактивных отходов не удаляются. Также если в жидких радиоактивных отходах имеются коллоиды или органические вещества с крупными молекулами, то сорбент теряет свои свойства и выходит из строя из-за забивки пор .

На практике перед проведением ионного обмена для удаления коллоидных частиц применяют фильтрование на намывных фильтрах. Применение же метода коагуляции вместо фильтрования приводит к образованию больших объёмов отходов. Органические соединения из жидких радиоактивных отходов удаляются ультрафильтрацией. Заметен один из главных недостатков применения ионного обмена для очистки жидких радиоактивных отходов - это необходимость проведения предварительной подготовки таких отходов .

Для очистки высокоактивных жидких отходов синтетические органические сорбенты не применяют в виду их неустойчивости к воздействию высокоактивного излучения. Такое воздействие приводит к разрушению сорбента .

Для обеспечения высокой степени очистки процесс ионообменной очистки проводят в два этапа. На первом этапе из жидких отходов удаляют соли и небольшие количества радионуклидов, а уже на втором этапе проводят непосредственное удаление нуклидов из обессоленных жидких отходов. Регенерацию сорбента проводят противотоком. Чтобы повысить производительность фильтров скорость в начале цикла устанавливается в (90ч100) м/ч, а в конце цикла снижается до значений в (10ч20) м/ч .

Очистка обессоленных отходов даёт возможность применять эффективные фильтры смешанного действия (их регенерация затруднена) и намывные фильтры в виду того, что при очистке таких отходов необходимость в регенерации минимальна. Благодаря смешенной загрузке анионитов и катионитов в формах Н + и ОН-, устраняется противоионный эффект, и это приводит к повышению степени очистки и возможности увеличения скорости фильтрования до 100 м/ч .

Все жидкие радиоактивные отходы содержат в том или ином количестве взвеси, которые обладают склонность к молекулярной и ионообменной сорбции. Также продукты коррозии с гидратированными окислами железа, марганца, кобальта и никеля могут сорбировать микрокомпоненты. В связи с этим предлагается отделять взвеси для заметного улучшения степени очистки жидких отходов .

Для удаления из отходов таких компонентов, как 137 Cs, 99 Sr, 60 Co, используют добавление селективных сорбента, в данном случае - наноглины (монтмориллонит), что обеспечивает 98% очистку от данных компонентов. Сорбцию на селективных компонентах проводят в сочетании с коагуляцией .

Химическое осаждение является одним из эффективных вариантов статической сорбции. К достоинствам химических методов можно отнести низкую стоимость, доступность реагентов, возможность удаления радиоактивных микрокомпонентов в ионной и коллоидной формах, а также переработки засоленных жидких отходов .

Главной особенностью химического осаждения является селективность к различным микрокомпонентам, особенно к 137 Cs, 106 Ru, 60 Co, 131 I, 90 Sr. Коагуляция и умягчение являются методами химического осаждения; при применении этих методов идёт очистка от радионуклидов в коллоидной, ионной и молекулярной формах .

При применении содово-известкового умягчения CaCO 3 и MgOH 2 выпадают в осадок и служат коллекторами для 90 Sr, который удаляется кристаллизацией с CaCO 3 . Также использование данного метода позволяет удалять 95 Zr и 95 Nb .

Цезий (137 Cs) удаляют при помощи осаждения ферроцианидов железа, никеля (самый эффективный), меди и цинка, при этом коэффициент очистки составляет 100 .

Рутений (106 Ru) и кобальт (60 Co) плохо концентрируются в осадках из-за большого количества их химических форм. Удаление рутения производится такими сорбентами, как сульфид кадмия, сульфид железа, сульфид свинца. Очистка от кобальта эффективна на оксигидратах хрома и марганца. Радиоактивный йод 131 I производится соосаждением иодидом меди или серебра .

Химическое осаждение завершается процедурами разделения фаз. При разделении фаз идёт осветление большей части жидких отходов и концентрирование шламов. Разделение фаз производится фильтрованием или воздействием на систему силовым полем, которое может быть гравитационным (отстойники и осветлители) и инерционным (центрифуги). Из-за образования больших объёмов пульп очень высокой влажности отстойники применяют крайне редко, используя для этого осветлители. Осветление в таких аппаратах идёт с большими скоростями и обеспечивает высокую степень очистки .

Для дальнейшего осветления жидкости проводят фильтрование. Применение насыпных фильтров обеспечивает более тонкое фильтрование, такие фильтры имеют большую производительность, а при их регенерации образуется небольшое количество отходов. Насыпные фильтры получили большее распространение из-за простоты и надёжности, не смотря на образование большого количества вторичных отходов при регенерации .

РЕФЕРАТ

Обсуждаются сорбционные и ионообменные методы очистки стоков, диапазон концентраций загрязнителей для адсорбционного способа. Обсуждаются ряд сорбентов. Процессы регенерации.

Ключевые слова:

Применение

Известно, что адсорбционные методы применяют в водоподготовке, в водоочистке для глубокой очистки сточных вод от растворенных органических веществ после биологической очистки, в локальных установках по очистке стоков , если концентрация этих веществ в воде невелика и они биологически не разлагаются или являются сильнотоксичными и в гидрометаллургии. Верхний предел применения сорбционных методов 1000 мг/л. Нижний предел применения 5 мг/л. Применение локальных установок считается целесообразным, если вещество хорошо адсорбируется при небольшом удельном расходе адсорбента , а концентрация загрязнителя приближается к верхнему пределу. Системы сорбционной доочистки работают при низких концентрациях загрязнителя (до 100 мг/л), высокой линейной скорости стока и высоких коэффициентах распределения сорбата в сорбенте по сравнению с раствором. Применяют сорбцию для обезвреживания сточных вод от фенолов, гербицидов, пестицидов, ароматических нитросоединений, ПАВ, красителей, тяжелых металлов и др. Достоинством метода является высокая эффективность, возможность очистки сточных вод содержащих ряд токсичных веществ, а также для извлечения и рекуперации этих веществ. На рынке есть самые разнообразные сорбенты . Адсорбционная очистка сточных вод может быть регенеративной, с извлечением вещества из адсорбента и его утилизацией. Она может быть деструктивной, при которой извлеченные из сточных вод вещества уничтожаются вместе с адсорбентом. Эффективность адсорбционной очистки стоков достигает 80-95% и зависит от химической природы адсорбента , величины адсорбционной поверхности и ее доступности, от химического строения вещества-загрязнителя и химической формы его нахождения в среде. Мы применяем преимущественно регенеративную сорбционную очистку стоков , с оригинальными методами регенерации и элюирующими средами.

Адсорбенты

В качестве сорбентов используют самые разные вещества: активные угли , синтетические сорбенты и некоторые отходы производства (золу, шлаки, опоки, опилки и др.). Минеральные сорбенты - глины, силикагели , алюмогели и гидроксиды металлов применяют для адсорбции различных веществ из сточных вод сравнительно редко, так как энергия взаимодействия их с молекулами воды велика и иногда превышает энергию адсорбции . Наиболее универсальными из адсорбентов являются активные угли, однако они должны обладать определенным комплексом свойств. Активные угли должны слабо взаимодействовать с молекулами воды и хорошо - с органическими веществами, быть относительно крупнопористыми (с эффективным радиусом адсорбционных пор в пределах 0,8-5,0 им, или 8-50 А), чтобы их поверхность была доступна для органических молекул. При малом времени контакта со сточной водой они должны иметь высокую адсорбционную емкость, высокую селективность и малую удерживающую способность при регенерации. При соблюдении последнего условия затраты на реагенты для регенерации угля будут небольшими. Угли должны быть механически прочными, быстро смачиваться стоком, иметь монодисперсный гранулометрический состав. В процессе очистки стоков используют мелкозернистые адсорбенты с частицами размером 0,25-0,5 мм и высокодисперсные угли с частицами размером менее 40 мкм. Угли должны обладать малой каталитической активностью по отношению к реакциям окисления, конденсации и др., так как некоторые органические вещества, находящиеся в сточных водах , способны окисляться и осмолятся при прохождении стока . Эти процессы ускоряются катализаторами. Осмелившиеся вещества забивают поры адсорбента, что затрудняет его низкотемпературную регенерацию. Наконец, они должны иметь низкую стоимость, не уменьшать адсорбционную емкость после регенерации и обеспечивать большое число циклов работы. Сырьем для активных углей может быть практически любой углеродсодержащий материал: уголь, древесина, полимеры, отходы пищевой, целлюлозно-бумажной и других отраслей промышленности. Адсорбционная способность активных углей является следствием сильно развитой поверхности и пористости. Карбохромы и карбопаки представляют собой гранулированные углеродные сорбенты . Они относятся к широкопористым материалам, их удельная поверхность от 10 до 100 м 2 /г (А.В.Киселев, Д.П.Пошкус, Я.И.Яшин Молекулярные основы адсорбционной хроматографии.-М.:Химия, 1980). Они обладают высокой сорбционной способностью, механически прочны, но настолько дороги, что применяются только в хроматографии. В очистке сточных вод до сих пор применяют угли, хотя созданы гораздо более эффективные материалы.

Основы процесса адсорбции

Вещества, хорошо адсорбируемые из сточных вод активными углями, имеют выпуклую изотерму адсорбции , а плохо адсорбирующиеся - вогнутую. Изотерму адсорбции вещества, находящегося в сточной воде , определяют опытным путем. Если в сточной воде присутствует несколько компонентов, то для определения возможности их совместной адсорбции для каждого вещества находят значение стандартной дифференциальной свободной энергии и определяют разность между максимальным и минимальным значением. Если разница больше некоторого критического значения, совместная адсорбция всех компонентов возможна. Если это условие не соблюдается, то очистку проводят последовательно в несколько ступеней. Скорость процесса адсорбции зависит от концентрации, природы и структуры растворенных в стоке веществ, температуры воды, вида и свойства адсорбента . В общем случае процесс адсорбции складывается из трех стадий: переноса вещества из сточной воды к поверхности зерен адсорбента (внешнедиффузионная область), собственно адсорбционный процесс , перенос вещества внутри зерен адсорбента (внутридиффузионная область). Принято считать, что скорость собственно адсорбции велика и не лимитирует общую скорость процесса. Следовательно, лимитирующей стадией может быть внешняя либо внутренняя диффузия. В некоторых случаях процесс лимитируется обеими этими стадиями. Во внешнедиффузионной области скорость массопереноса в основном определяется интенсивностью турбулентности потока, которая в первую очередь зависит от скорости жидкости. Во внутридиффузионной области интенсивность массопереноса зависит от вида и размеров пор адсорбента, от форм и размера его зерен, от размера молекул адсорбирующихся веществ, от коэффициента массопроводности. Учитывая все эти обстоятельства, определяют условия, при которых адсорбционная очистка сточных вод идет с оптимальной скоростью. Процесс целесообразно проводить при таких гидродинамических режимах, чтобы он лимитировался во внутридиффузионной области, сопротивление которой можно снизить, изменяя структуру адсорбента и уменьшая размеры зерна. Для ориентировочных расчетов рекомендуется принимать следующие значения скорости и диаметра зерна адсорбента : скорость 1,8 м/ч и размер частиц 2,5 мм. При значениях меньше указанных, процесс лимитируется по внешнедиффузионной области, при больших значениях - во внутридиффузионной.

Адсорбционные установки

Процесс адсорбционной очистки сточной воды ведут при интенсивном перемешивании адсорбента с водой, при фильтровании воды через слой адсорбента или в псевдоожиженном слое на установках периодического и непрерывного действия. При смешивании адсорбента со сточной водой используют активный уголь в виде частиц 0,1 мм и меньше. Процесс проводят в одну или несколько ступеней. Сверху подают 15-20%-ю угольную суспензию, а снизу сточную воду . Избыток угля отводят в сборник.

Мы производим и поставляем безнапорные сорбционные модули Альфа-7ХС , а также различные напорные фильтра. Безнапорные адсорберы имеют удобную верхнюю загрузку, что является преимуществом при сильной загрязненности стоков, когда нужно провести глубокую регенерацию сорбента.

Регенерация адсорбента

Важнейшей стадией процессаад-сорбционной очистки стока является регенерация активного угля. Адсорбированные вещества из угля извлекают десорбцией насыщенным или перегретым водяным паром либо нагретым инертным газом. Температура перегретого пара при этом (при избыточном давлении 0,3-0,6 МПа) равна 200-300 °С, а инертных: газов 120-140 °С. Расход пара при отгонке легколетучих веществ равен 2,5-3 кг на 1 кг отгоняемого вещества, для высококипящих в 12,5-30 кг. После десорбции пары конденсируют и вещество извлекают из конденсата. Для регенерации углей может быть использована и экстракция (жидкофазная десорбция) органическими низкокипящими и легко перегоняющимися с водяным паром растворителями. При регенерации органическими растворителями (метанолом, бензолом, толуолом, дихлорэтаном и др.) процесс проводят при нагревании или без нагревания. По окончании десорбции остатки растворителей из угля удаляют острым паром или инертным газом. Для десорбции адсорбированных слабых органических электролитов их переводят в диссоциированную форму. При этом ионы переходят в раствор, заключенный в порах угля, откуда их вымывают горячей водой, раствором кислот (для удаления органических оснований) или раствором щелочей (для удаления кислот). При этом за счет ионизации молекулы сорбата получают заряд и за счет этого десорбируются. В некоторых случаях перед регенерацией адсорбированное вещество путем химического превращения переводят в другое вещество, которое легче извлекается из адсорбента. В том случае, когда адсорбированные вещества не представляют ценности, проводят деструктивную регенерацию химическими реагентами (окислением хлором, озоном или термическим путем). Термическую регенерацию проводят в печах различной конструкции при температуре 700-800°С в бескислородной среде. Регенерацию ведут смесью продуктов горения газа или жидкого топлива и водяного пара. Она связана с потерей части углеродного сорбента (15-20%). Разрабатываются биологические методы регенерации углей, при которых адсорбированные вещества биохимически окисляются. Этот способ регенерации значительно удлиняет срок использования сорбента, но длителен и трудоемок.

Примеры адсорбционной очистки

Адсорбционная очистка сточных вод от нитропродуктов, содержание которых в воде находится в пределах 1400 мг/л, производят углями КАД до остаточного их содержания не более-20 мг/л. Уголь регенерируют растворителями (бензолом, метанолом, этанолом, метиленхлоридом). Растворитель и нитропродукты разделяют перегонкой. Остатки растворителя из угля удаляют острым паром. Для извлечения фенолов из сточных вод используют активные угли различных марок. Высокой поглотительной способностью обладают селективные сильнокарбонизированные малозольные угли с высокой пористой структурой, а также угли марок ИГП-90, КАД (йодный), БАУ, ОУ (сухой), АГ-3, АП-3. Степень извлечения фенолов этими углями изменяется от 50 до 99%. Сорбционная емкость уменьшается с повышением рН среды и при рН=9 составляет 10-15%. При концентрации фенолов до 0,5 г/л величина адсорбции соответствует экспонентной зависимостью. Регенерацию углей проводят термическим способом в многоподовых печах или печах с кипящим слоем при температуре 870-930 °С. При этом теряется 10-15% адсорбента. При регенерации углей растворителями (этиловым эфиром, бензолом, щелочью) регенерация достигает соответственно 85, 70 и 37%. Возможно удаление фенолов из углей и аммиачной водой.

В некоторых случаях очистку сточных вод от фенолов возможно проводить с применением таких сорбентов, как диатомиты, трепел, шлаки, кокс, торф, силикагель, кварцевый песок, керамзит, керамикулит и др. Однако адсорбционная емкость их мала. Для силикагеля она составляет 30%, а для полукокса всего 6%. Практически полной дефенолизации сточных вод добиваются, используя в качестве сорбента сульфат железа, модифицированный полиакриламидом и карбоксиметилцеллюлозой. Лигнин, пропитанный хлорным железом, способен сорбировать до 92% -фенола при концентрации последнего 3-9 мг/л. Активные угли в виде порошков применимы для удаления из воды хлорорганических пестицидов до их остаточной концентрации 10 -б мг/л. Наибольшую емкость имеют угли ОУ-А, КАД, БАУ, СКТ. Адсорбционная очистка сточных вод производства инсектицидных препаратов «Прима-7» и «Дихлофос» от токсичных компонентов до предельно допустимых концентраций достигается при удельном расходе угля АГ-3 -0,06 г/л и скорости фильтрования 2 м/ч. Для удаления небольших количеств ПАВ из сточных вод (не более 100—200 мг/л) используют адсорбционную очистку активными углями АГ-5 и БАУ, адсорбционная емкость которых по ОП-10 15%. Кроме того, можно применять активный антрацит (емкость - 2%) и природные сорбенты (торф, глины, бурые угли и др.), а также шлак и золу, сорбционная емкость которых зависит от рН среды. Например, анионные ПАВ сорбируются шлаком лучше всего в нейтральной среде. Наиболее эффективно процесс протекает в случае, если ПАВ находится в растворе в виде мицелл. Процесс очистки проводят в фильтрационных колонках с неподвижным слоем угля, пропуская воду снизу вверх со скоростью 2-6 м/с. Предварительно из воды должны быть удалены взвешенные вещества. Регенерацию углей проводят горячей водой, водными растворами кислот (для удаления катионообменных ПАВ) или щелочей (для удаления анионоактивных ПАВ), а также органическими жидкостями, растворяющими ПАВ. Для адсорбции ПАВ могут быть использованы осадки гидроксидов алюминия и железа, сульфиды меди и фосфаты кальция, которые образуются при добавлении в сточную воду коагулянтов. Свежевыделенные гидроксиды имеют крупнопористую структуру. Удельная поверхность их пор составляет 100-400 м 2 /г. При изучении процесса адсорбции ОП-7 гидроксидом алюминия установлено, что изотермы имеют сложную кривую, состоящую из трех участков. При увеличении рН сточной воды сорбция ОП-7 этим адсорбентом уменьшается. На адсорбцию также влияет содержание в сточной воде электролитов и масса сорбента. Введение в сточную воду полиакриламяда интенсифицирует процесс выпадения хлопьев гидроксидов и увеличивает их адсорбионную емкость. Преимущество углеродных сорбентов - сравнительно низкая стоимость. Недостаток их состоит в склонности к механическому разрушению, окисляемость. Угли плохо сорбируют полярные вещества. Гранулированные углеродные сорбенты имеют высокую стоимость. Низкая плотность и гидрофобность сильно осложняет укладку сорбента в слой, вследствие чего колонки с ними имеют низкое количество теоретических тарелок. В последние годы появились сорбенты, в которых сочетаются высокие сорбционные свойства, низкую стоимость, высокую плотность и способность сорбировать полярные вещества. В частности к ним относится сорбент ОДМ. Сорбент ОДМ - гранулированный фильтрующий материал терракотового цвета (светло-оранжевого) изготовленный из природного сырья, с содержанием основных компонентов: SiО2 до 84%; Fe 2 О 3 не более 3.2%; Al 2 О 3 , MgО, СаО - 8%. Токсичность водной вытяжки удовлетворяет санитарным требованиям.

Средняя насыпная масса, кг/м 3: 680-720.

Удельная поверхность, м 2 /г: 120-180.

Полная сорбционная емкость, г/г: 1.3.

Влагоемкость, %: 80-95.

Условная механическая прочность, %: 0.85.

Измельчаемость, %: 0.22.

Истираемость, %: 0.09.

Общая пористость, %: 80.

Объем внутренних пор, см 3 /г: до 0.6.

Огнеупорность, оС: 1400.

Маслоемкость по нефтепродуктам, мг/г: 900.

Ионообменная емкость, мгэкв/г: до 1.2 по растворенным солям Cr, Ni и др. тяжелых металлов.

Ионообменная емкость по CaO, MgO, мг/ г: до 950.

Коэффициент распределения радионуклидов составляет 103-104.

Токсичность водной вытяжки удовлетворяет гигиеническим требованиям.

Удельная эффективность естественных радионуклидов не более, Бк/кг: 80.

Область применения: при рH 5-10.

Пористость межзерновая, %: 42-52.

Сорбционная емкость в статических условиях, мг/г(Динамическая активность, мг/г):

Алюминий -до 1.5 (700);

Железо - до 9.0 (850);

Нефтепродукты - до 9.0 (170);

Фенол - до 16.0.

Материал химически стоек, механически устойчив, смачивается водой и может регенерироваться прокаливанием до температуры 600 0 С.

Многолетний опыт применениясорбента ОДМ в комплексах очистки сточных вод Альфа подтвердил неизменно высокие сорбционные качества сорбента. Сорбент мы успешно поставляли от Урала до Чукотки, он выдерживает воздействие низких температур. Повышенные сорбционные свойства проявляются при его применении после воздействия на стоки электрохимической деструкции в электрореакторных модулях.

Кроме очистки стоков , сорбент успешно эксплуатировался на водоподготовке, в частности на Иркутском пивзаводе, причем в жестких условиях, на горячей воде.

Учитывая сложную ситуацию с питьевой водой на большей части территории России, такой материал актуален для водоподготовки. Предпочтительная область применения - водоподготовка природных вод, содержащих примеси железа, умеренные концентрации солей жесткости и взвеси.

Для правильной эксплуатации сорбентов нужно знать их свойства, владеть НОУ-ХАУ по применению их для конкретного типа сточной воды. Мы изучали сорбенты в нашей лаборатории, набирали опыт применения их в ходе наладочных работ и опытной эксплуатации. Поэтому мы способны осуществить сорбционную очистку сточной воды в сжатые сроки и с высоким качеством.

По вопросам оснащения очистных сооружений сорбентами, условий их эксплуатации можно проконсультироваться с автором данной публикации по электронной почте [email protected]

Для осуществления самого процесса сорбционной очистки мы применяем как напорные, так и безнапорные фильтры-адсорберы, исполненные в пластике, нержавстали. При умелом комбинровании тех и других в полной мере проявляются их преимущества. В частности безнапорные адсорберы Альфа-8ХС с прозрачной верхней крышкой дают возможность наблюдать за процессом сорбции, отбирать пробы адсорбента, бысто извлекать и промывать сорбент и они предпочтительны при высоких удельных нагрузках на фильтрующий материал. Тогда как напорные адсорберы работают на малых концентрациях в автоматическом режиме и обеспечивают большую эффективность сорбции.

Кроме стандартных сорбентов мы имеем возможность изготавливать сорбенты специальные, высокоселелективные, настроенные на определенный сорбат

Материалы, опубликованные на сайте защищены согласно закону об авторских правах Закон РФ от 9 июля 1993 г. N 5351-I "Об авторском праве и смежных правах" (с изменениями от 19 июля 1995 г., 20 июля 2004 г.) и не могут быть использованы без разрешения автора .

Ключевые слова: очистная система, очистные сооружения, сорбент, сорбция, очистка стоков, ионит, катионит, анионит, амфолит, сорбат, регенерация

Сущность метода: сорбционная очистка сточных вод производства - это процесс поглощения частиц загрязнителя различными фильтрующими материалами. Основным критерием при выборе того или иного фильтрующего материала являются сорбционные свойства материала, так как именно от них зависит эффективность очистки сточных вод. Среди критериев выбора фильтрующего материала можно назвать несколько основных свойств материала:

Механическая прочность материала;

Химическая устойчивость материала;

Сорбционные свойства материала.

Сорбционные методы можно условно поделить на две разновидности:

1) сорбция на активированном угле (адсорбционный обмен);

2) сорбция на ионитах (ионный обмен).

Достоинства метода:

1) очистка до ПДК;

2) возможность совместного удаления различных по природе примесей;

3) отсутствие вторичного загрязнения очищаемых вод;

4) возможность возврата очищенной воды.

Недостатки метода:

1) дороговизна и дефицитность сорбентов;

2) громоздкость оборудования;

3) большой расход реагентов для регенерации сорбентов;

4) образование вторичных отходов, требующих дополнительной очистки.

4. Доочистка сточных вод фильтрованием через неподвижный слой сорбента

Двухступенчатая доочистка сточных вод осуществляется последовательно на песчаных и сорбционных фильтрах, которые устанавливаются после других сооружений очистки. Технология очистки предназначена для получения такого качества воды, которое позволяет использовать обеззараженную воду в технологических процессах промышленных предприятий. Доочистке на фильтрах подвергаются все загрязнения, находящиеся в составе сточных вод.

Для доочистки сточных вод использовались активированные угли марок АГ-5 и КАД йодный, выпускаемые промышленностью, а также торфяной активированный уголь (ТАУ).

Характеристика активированных углей, используемых для доочистки сточных вод, приведена в табл.

Характеристика активированных углей

Марка угля

Суммарная пористость, см 3 /г

Удельный объем макропор, см 3 /г

Удельный объем переходных пор, см 3 /г

Удельный объем микропор, см 3 /г

Порозность загрузки

Насыпной вес, г/см 3

Диаметр зерен, мм

Удельная поверхность переходных пор, м 2 /г

КАД йодный

Показатели качества сточных вод (до и после доочистки) приведены в табл.

Показатели качества сточных вод после доочистки на фильтрах

Показатель

Концентрация загрязнений до применения фильтров, мг/л

Концентрация загрязнений после доочистки, мг/л

на песчаных фильтрах

применение сорбционного фильтра, загруженного углем АГ-5

применение сорбционного фильтра, загруженного углем КАД йодным

применение сорбционного фильтра, загруженного ТАУ углем

Взвешенные вещества

отсутствуют

отсутствуют

отсутствуют

БПК поли

Растворимый кислород

На рис. 6 приведена схема доочистки сточных вод на двухступенчатых фильтрах. реагентный сточный фильтрование

Рис. 6. Схема доочистки сточных вод: 1 – вода после сооружений биологической очистки; 2 – приемный резервуар; 3 – насосная установка; 4 – устройство для перемешивания воды; 5 – распределительная камера; 6 – фильтр, загруженный песком; 7 – приемный резервуар; 8 – насосная установка; 9 – устройство для перемешивания воды; 10 – распределительная камера; 11 – сорбционный фильтр; 12 – промывной насос; 13 – резервуар промывной воды; 14 – сброс очищенной воды

Технологическая схема двухступенчатой доочистки сточных вод включает в себя приемный резервуар 2, насосную установку 3, с помощью которой вода подается в распределительную камеру 5, откуда самотеком поступает на песчаные фильтры 6. Очищенная на песчаных фильтрах вода собирается в приемный резервуар 7, откуда насосной установкой 8 перекачивается в распределительную камеру 10. На сорбционные фильтры 11 вода из распределительной камеры подается снизу вверх. При подаче сточных вод в распределительные камеры 5 и 10 часть воды переливается и отводится по трубопроводам 4 и 9 в приемные резервуары, где происходит перемешивание исходной жидкости. Эффективность очистки воды 96–99 %

Первая ступень фильтра загружена песком с диаметром зерен 1,8 мм и высотой 0,5–1 м. Скорость фильтрования составляет 10 м/ч. Период между регенерацией загрузки фильтра зависит от концентрации веществ и составляет 9–15 ч. Грязеемкость фильтра находится в пределах от 2,6 до 6,6 кг/м 3 . Промывка фильтра производится водой с интенсивностью 18–20 л/см 2 . Продолжительность промывки составляет 7 мин. Объем промывной воды – 4 % от объема очищенной воды. Для фильтров первой ступени можно использовать водовоздушную промывку с интенсивностью подачи воды 12 л/см 2 и интенсивностью подачи воздуха 16–19 л/см 2 . Продолжительность водовоздушной промывки составляет 6 мин.

Сорбционный фильтр загружен сорбентом на высоту 3,2 м, скорость фильтрования воды – 2–2,5 м/ч. Крупность зерен загрузки 1–2 мм. Интенсивность промывки сорбционных фильтров 6–12 л/см 2 . Продолжительность промывки принимается 7–10 мин. и уточняется в процессе эксплуатации фильтров. Фильтроцикл составляет 24 часа. Продолжительность работы сорбционных фильтров до регенерации – от 3 до 4 суток. Регенерация загрузки сорбционных фильтров выполняется тогда, когда ХПК (химическое потребление кислорода) после фильтрования на второй ступени превышает 15 мг/л.

Расчет величины рН сточных вод

Количество кислотных компонентов в стоках составляет:

H 2 SO 4 = 500 мг/л

HCl = 500 мг/л

M (H 2 SO 4) = 2·1,008+32,064+4·15,999 = 98,076 г/моль

M (HCl) = 1,008+35,453 = 36,461 г/моль

[Н + ] = / M = 500 / 98,076 = 5,1 моль/м 3

[Н + ] = / M = 500 / 36,461 = 13,7 моль/м 3

pH = -1g =-1g (([Н + ] H2SO4 + [Н + ] HCl) /Q ст)

где Q ст – производительность стока, Q ст = 2 м³/час

pH = -1g ((5,1 + 13,7) / 2) = - lg 9,4 = - 0,97

Таким образом, рН стоков равен 0,97 что говорит об избытке кислых компонентов (кислот).

1м 3 =1000дм 3 =1000л

1мг/л=1мг/дм 3 =1г/м 3

Расход реагента в граммах на 1г иона металла,

Среди существующих методов водоочистки сорбционный способ является одним из самых распространенных. Что это такое сорбционная очистка воды , и для чего она нужна? Данная процедура относится к эффективным способам глубокой очистки жидкости, позволяющим убрать вредные примеси и химические соединения посредством связывания частиц на молекулярном уровне. Уникальность такой фильтрации состоит в возможности удалить из воды органику, не поддающуюся отделению другим образом.

Сорбционный метод очистки воды с использованием высокоактивных сорбентов позволяет получить жидкость, в которой почти нет остаточного концентрата. Высокая активность сорбентов делает возможным взаимодействие с веществами, независимо от их концентрации: даже при малых дозах вредных примесей этот способ будет работать.

Понятие адсорбции и ее эффективность

Термин «адсорбция» означает процесс поглощения загрязнителей в воде поверхностью твердых тел. В его основе лежит принцип пропускания молекул таких примесей через особую пленку, окружающую адсорбент, и их притягивание к его поверхности. Вышеназванный процесс происходит, если жидкость для очистки перемешивается.

Наибольшего эффекта такой способ позволяет добиться при малой концентрации вредных веществ, что наблюдается в случае сильной очистки. Все, что не осело на предыдущих фильтрах, удаляется сорбцией, при этом на выходе получается чистая вода.

Скорость процесса и его эффективность зависят от ряда факторов:

  • Структуры сорбента.
  • Температуры.
  • Концентрации загрязнителя и его состава.
  • Активности реакции среды.

При современных установках лучшим вариантом сорбента, эффективно очищающим воду, признается активированный уголь разных типов. Чем больше данное вещество имеет микропор, тем выше качество очистки воды методом угольной сорбции.

Специалисты компании «Русватер» помогут подобрать оптимальный вариант фильтрующих установок, работающих по принципу сорбции, что даст возможность организовать эффективную водоподготовку и очистку воды от различных примесей, независимо от ее назначения.

Фильтрация воды через активированный уголь должна исключать попадание на сорбент жидкости с растворенными взвесями и коллоидными частицами, так как они портят поверхность угля, экранируя его поры. Сорбент, пришедший в негодность из-за такого воздействия, восстанавливают либо меняют.

Для дехлорирования воды применяются сорбционные фильтры на основе активированного угля, делающие воду лучше, а также позволяющие очистить ее от азотистых включений. Совместное использование сорбции и озонирования в разы усиливает действенность очистки с одновременным повышением возможностей активированного угля. При использовании в роли сорбента природных минералов с Ca и Mg, а также окислов алюминия, из воды удаляются соединения фосфора.

Для чего нужна сорбция и где она используется?

Фильтрация воды углем с помощью сорбционных установок различного типа применяется для глубокой очистки жидкости в замкнутых системах, включая очистку канализационных стоков от органики.

Среди существующих методик тонкой очистки сорбция признается одним из наиболее эффективных способов, позволяющим удалить из воды органические вещества без значительных затрат. Технология пользуется популярностью в случаях необходимости очистить стоки от красителей, а также убрать иные гидрофобные соединения.

Данный способ не подходит, если в стоках присутствуют только неорганические загрязнители либо растворенная в них органика имеет низкомолекулярную структуру. Сорбция может применяться в комплексе с биологической очисткой или выступать самостоятельным средством.

Сорбционная очистка воды позволяет освободить жидкость от привкуса сероводорода и хлора и убрать неприятные запахи. Эффективность использования активированного угля в роли сорбента объясняется его структурой: фильтрацию выполняют имеющиеся микропоры. Получают активированный уголь из древесины, торфа, продуктов животного происхождения либо ореховых скорлупок. Нанесение на поверхность активированного угля частиц ионов серебра защищает материал от поражения разного рода микроорганизмами.

В большинстве случаев активированный уголь применяют для очистки воды от органики и для проведения процесса водоподготовки перед обратным осмосом. Сорбция позволяет эффективно убрать из воды хлор, улучшив ее качества. При этом таким методом хлор удаляется также для подготовки технической воды, применяемой для гигиенических целей.

Наши системы угольной очистки

Не менее востребованы сорбционные фильтры в общей системе обезжелезивания. Сорбционная очистка воды от железа необходима для удаления его твердых частиц после окисления до нерастворимых оксидов.

Системы сорбционной очистки могут быть разными. Выбор конкретного варианта происходит после проведения анализа воды и установления содержащихся в ней примесей. Такая работа должна проводиться профессионалами, поэтому наши специалисты всегда готовы помочь вам в этом.

Сорбционные методы являются наиболее распространенными для выделения хрома из сточных вод гальванопроизводства. Их можно условно поделить на три разновидности:

  • 1) сорбция на активированном угле (адсорбционный обмен);
  • 2) сорбция на ионитах (ионный обмен);
  • 3) комбинированный метод.

Адсорбционный метод.

Адсорбционный метод является одним из эффективных методов извлечения цветных металлов из сточных вод гальванопроизводства. В качестве сорбентов используются активированные угли, синтетические сорбенты, отходы производства (зола, шлаки, опилки и др.).

Минеральные сорбенты - глины, силикагели, алюмогели и гидроксиды металлов для адсорбции хрома из сточных вод используются мало, так как энергия взаимодействия их с молекулами воды велика - иногда превышает энергию адсорбции.

Наиболее универсальными из адсорбентов являются активированные угли, однако они должны обладать определенными свойствами:

  • - слабо взаимодействовать с молекулами воды и хорошо
  • - с органическими веществами;
  • - быть относительно крупнопористыми;
  • - иметь высокую адсорбционную емкость;
  • - обладать малой удерживающей способностью при регенерации;
  • - иметь высокую прочность;
  • - обладать высокой смачиваемостью;
  • - иметь малую каталитическую активность;
  • - иметь низкую стоимость.

Процесс адсорбционного извлечения шестивалентного хрома из сточных вод ведут при интенсивном перемешивании адсорбента с раствором, при фильтровании раствора через слой адсорбента или в псевдосжиженном слое на установках периодического и непрерывного действия. При смешивании адсорбента с раствором используют активированный уголь в виде частиц диаметром 0,1 мм и меньше. Процесс проводят в одну или несколько ступеней .

Рядом исследователей изучена адсорбция хрома на активированном угле как функция рН.

Установлено, что хром (VI) легко адсорбируется на активированном угле в виде анионов, таких как HCrO4 - и CrO4 2- . В ряде работ показано, что предварительная обработка адсорбентов азотной кислотой повышает их сорбционную способность по хрому (VI) .

Известен способ адсорбции хрома из сточных вод при использовании твердого лигнина. Установили, что процесс сорбции зависит от рН раствора и дозы лигнина. Оптимальное время контакта раствора с лигнином составляет 1 час . В качестве сорбента в основном используется активированный уголь, другие сорбенты используются крайне редко. В качестве других сорбентов в различных исследованиях предлагаются:

  • а) отходы пивоваренной промышленности (картон с сорбированным штаммом дрожжей Saccharomyces carlsbergensis ;
  • б) древесные опилки, предпочтительно сосновые, обработанные сополимером винилового эфира моноэтаноламина с виниловым эфиром 4-метилазагепта-3,5-диен -1,6-диола (СВЭМВЭ);
  • в) растительный материал (шлам-лигнин, целлюлоза и др.) ;
  • г) железные опилки ;
  • д) цеолиты, силикагели, бентонит ;
  • е) глины ;
  • ж) вермикулит .

Достоинства метода

  • 1) Очистка до ПДК.
  • 2) Возможность совместного удаления различных по природе примесей.
  • 3) Отсутствие вторичного загрязнения очищаемых вод.
  • 4) Возможность рекуперации сорбированных веществ.
  • 5) Возможность возврата очищенной воды после корректировки рН.

Недостатки метода

  • 1) Дороговизна и дефицитность сорбентов.
  • 2) Природные сорбенты применимы для ограниченного круга примесей и их концентраций.
  • 3) Громоздкость оборудования.
  • 4) Большой расход реагентов для регенерации сорбентов.
  • 5) Образование вторичных отходов, требующих дополнительной очистки.

Метод ионного обмена.

Ионообменное извлечение металлов из сточных вод позволяет рекуперировать ценные вещества с высокой степенью извлечения. Ионный обмен - это процесс взаимодействия раствора с твердой фазой, обладающей свойствами обменивать ионы, содержащиеся в ней, на ионы, присутствующие в растворе. Вещества, составляющие эту твердую фазу, называются ионитами. Метод ионного обмена основан на применении катионитов и анионитов, сорбирующих из обрабатываемых сточных вод катионы и анионы растворенных солей. В процессе фильтрования обменные катионы и анионы заменяются катионами и анионами, извлекаемыми из сточных вод. Это приводит к истощению обменной способности материалов и необходимости их регенерации.

Наибольшее практическое значение для очистки сточных вод приобрели синтетические ионообменные смолы - высокомолекулярные соединения, углеводородные радикалы которых обрзуют пространственную сетку с фиксированными на ней ионообменными функциональными группами. Пространственная углеводородная сетка называется матрицей, а обменивающиеся ионы - противоионами. Каждый противоион соединен с противоположно заряженными ионами, называемыми анкерными. Реакция ионного обмена протекает следующим образом:

RH + NaCL = RNa + HCL,

при контакте с катионитом,

где R - матрица с фиксированными ионами; Н - противоион,

ROH + NaCL = RCL + NaOH,

при контакте с анионитом.

Для извлечения из сточных вод гальванопроизводства катионов трехвалентного хрома применяют Н-катиониты, хромат-ионы CrO32- и бихромат-ионы Cr2O72- извлекают на анионитах АВ-17, АН-18П, АН-25, АМ-п, АМ-8. Емкость анионитов по хрому не зависит от величины рН в пределах от 1 до 6 и значительно снижается с увеличением рН больше 6.

При концентрации шестивалентного хрома в растворе от 800 до 1400 экв/л обменная емкость анионита АВ-17 составляет 270 - 376 моль*экв/м 3 .

Регенерацию сильноосновных анионитов проводят 8 - 10 %-ным раствором едкого натра. Элюаты, содержащие 40 - 50 г/л шестивалентного хрома, могут быть направлены на производство монохромата натрия, а очищенная вода - использоваться повторно .

На базе ВлГУ разработана технология локальной очистки хромсодержащих стоков с целью извлечения из них соединений тяжелых цветных металлов, в т.ч. и хрома сорбцией на сильноосновном анионите. Степень очистки воды по данной технологии более 90 - 95%. Очищенная вода соответствует ГОСТ 9.317-90 и вполне пригодна для использования в системах замкнутого водооборота .

Изготавливаются: фильтры типа "ЭКОС-2" в ВНИИХТ, сорбенты: в НТЦ "МИУСОРБ" (Видное, Моск. обл.), МП "Поиск" (Ашхабад), ТОО "ТЭТ" (Долгопрудный, Моск. обл.), ВНИИХТ (Москва).

Фирмой Inovan Umwelttechnik GmbH & Co KG разработана блочно-модульная установка системы REMA, предназначенная для очистки производственных сточных вод от тяжелых металлов. Одинарный блок представляет собой ионообменную колонку, в которой вертикально друг под другом установлены 4 сменные кассеты. В процессе очистки сточные воды последовательно пропускают через эти кассеты снизу вверх.

Степень загрязненности ионообменной смолы определяют с помощью индикаторов.

На заводе "Почвомаш" (Киров) внедрен процесс очистки промстоков гальванических производств от ионов хрома волокнистыми материалами. Для сорбции анионов хрома используют материал ВИОН АС-1, имеющий в своем составе сильноосновные винилпиридиниевые группы с СОЕ 1.1 - 1.2 мг*экв/г. Изготовлены две сорбционных колонны из коррозионно-стойкой стали объемом 50 л каждая. Сорбция хрома зависит от его концентрации в исходном растворе. Так, если концентрация составляет до 10 мг/л, то в фильтрате его не обнаруживают. Однако при концентрации аниона хрома 75 мг/л и выше содержание его в фильтрате 0.04 - 0.01 мг/л, что вполне допустимо при замкнутом цикле. Влияние исходной концентрации раствора хрома на его содержание в фильтрате обусловлено высоким ионным радиусом Cr2O72-, вызывающим стерические затруднения при сорбции на волокнистом хемосорбенте. При высоком содержании хрома следует уменьшить скорость подачи раствора на сорбционную колонну. В этом случае возрастает степень очистки. При достижении насыщения сорбционных колонн их снимают со стенда и транспортируют в отделение гальванохимической переработки для регенерации хемосорбционного материала и утилизации элюата. Регенерацию ВИОН АС-1 проводят раствором Na2CO3 . При этом в каждую колонну заливают по 50 л раствора и оставляют его на 3 часа. Последующая операция заключается в промывке фильтра водой .

Было проведено исследование 8 волокнистых сорбентов, применяемых для очистки сточных вод от ионов тяжелых металлов (Ag, Hg, Cr, Cd, Fe).Установлено, что волокнистые сорбенты ПАН-ПЭА, ПАН-ТТО-МКХК и угольное волокно эффективно очищают сточную воду от ионов тяжелых металлов. Они легко регенерируются путем обработки кислотами и могут многократно использоваться для очистки. Из раствора, полученного после регенерации волокон, можно выделять металлы и использовать их повторно.

Синтезированы ионообменные материалы на основе отходов швейного и трикотажного производства, содержащие полиэфирное, полиакрилонитрильное волокно.

Установлено, что синтезированные ионообменные волокна проявляют селективные ионообменные свойства.

В лабораторных условиях исследовано выделение хрома из промывных сточных вод гальванических цехов с помощью ионообменных смол (ионообменные смолы в ОН-форме типа "Wolfatit" (Германия) марок SWB, SZ, SL, SBK, АД-41 и активированного угля марки AS)и углеродистых сорбентов .

Система mod-ix фирмы "Krebs & Co.AG" (Германия) включает предварительный фильтр, вентили, трубопроводы, насосы, приборы для контроля качества воды по ее электросопротивлению и две интегрированные в нее ионообменные колонки с пропускной способностью 1.5 - 4 м 3 /ч. Одна из колонок используется по прямому назначению, другая в это время регенерируется. Описанная система состоит из отдельных модулей и поэтому легко монтируется и демонтируется .

Достоинства метода

  • 1) Возможность очистки до требований ПДК.
  • 2) Возврат очищенной воды до 95% в оборот.
  • 3) Возможность утилизации тяжелых металлов.
  • 4) Возможность очистки в присутствии эффективных лигандов.

Недостатки метода

  • 1) Необходимость предварительной очистки сточных вод от масел, ПАВ, растворителей, органики, взвешенных веществ.
  • 2) Большой расход реагентов для регенерации ионитов и обработки смол.
  • 3) Необходимость предварительного разделения промывных вод от концентратов.
  • 4) Громоздкость оборудования, высокая стоимость смол
  • 5) Образование вторичных отходов-элюатов, требующих дополнительной переработки.