Расчет оснований и фундаментов: правила вычислений. Глава iv. фундаменты на естественном основании Разновидности фундаментов мелкого заложения

План лекции.

1.1. Работа грунта под нагрузкой.

1.2. Естественные основания. Виды грунтов и их важнейшие характеристики.

1.3. Искусственные основания.

2. Фундаменты малоэтажных жилых зданий.

2.1. Классификация фундаментов

2.2. Конструктивные решения фундаментов.

1. Основания фундаментов и их характеристика.

1.1. Работа грунта под нагрузкой

Грунты – это геологические породы, залегающие в верхних слоях земной коры, состоящие из твердых частиц (зерен) разной крупности (скелета грунта) и пор, заполненных или воздухом полностью, либо частично водой. А грунт, который находится под фундаментом в напряженном состоянии от действия нагрузки от здания, называется основанием фундамента .

Основание фундамента представляет собой массив грунта, расположенный под фундаментом и непосредственно воспринимающий через него нагрузки от здания или сооружения.

Эти нагрузки вызывают в основании напряженное состояние (рис.7.1), которое при достижении определенного уровня может привести к деформациям , как самого основания, так и фундамента.

Вследствие давления, предаваемого зданием на основание, грунты под фундаментом испытывают значительные сжимающие усилия. Под действием этих усилий грунты равномерно уплотняются. Такие равномерные деформации называют осадкой грунта, которая вызывает осадку фундаментов.

Неравномерные деформации грунта, происходящие в результате уплотнения и, как правило, коренного изменения структуры грунта под воздействием внешних нагрузок, собственной массы грунта и других факторов (замачивания просадочного грунта, подтаивание линз льда в грунте и т.д.), называют просадками. Они могут вызвать повороты фундаментов и т.п. вплоть до разрушения. Просадки оснований недопустимы.

Для того чтобы осадки не оказали опасных воздействий на работающие под нагрузкой конструкции, а также не повлияли на условия эксплуатации зданий, установлены предельные величины деформаций основания и напряжений в грунте , возникающих под подошвой фундаментов.

1.2. Естественные основания. Виды грунтов и их важнейшие характеристики.

Если грунты неподвижны и способны воспринимать нагрузку без предварительного усиления, то они могут быть использованы в качестве естественных оснований .

Качество естественного основания зависит от многих факторов, однако в первую очередь, его определяет вид грунта, его влажность, уровень грунтовых вод и условия промерзания.

Естественные основания – это грунты, которые в природном состоянии имеют достаточную несущую способность, небольшую и равномерную сжимаемость, не превышающую допустимые значения .

По своему строению грунты состоят из частиц, удерживаемых от взаимного смещения различным образом: жесткой связью между зернами (спаянностью) – в сцементированных грунтах, постоянно сохраняющих свою структуру; силой трения – в сыпучих грунтах; силой сцепления – в связных грунтах.

Грунты, используемые в качестве оснований зданий и сооружений, подразделяют в зависимости от геологических характеристик на скальные и нескальные .

К скальным грунтам относятся: изверженные, метаморфические и осадочные породы с жесткими связями между зернами (спаянные и сцементированные), залегающие в виде сплошного или трещиноватого массива. К таким породам относят, например, граниты, базальты, песчаники, известняки. Под нагрузкой от зданий и сооружений указанные породы не сжимаются и являются наиболее прочным естественным основанием.

К нескальным грунтам относятся крупнообломочные , песчаные и глинистые .

Крупнообломочные грунты по своей структуре (зерновому составу) подразделяются на щебенистые (вес частиц крупнее 10 мм составляет более половины) и дресвяные (вес частиц размером 2 – 10 мм составляет более 50 %). Если в этих грунтах преобладают окатанные частицы, они соответственно получают названия галечникового или гравийного.

Пески в сухом состоянии представляют в своей массе сыпучий грунт. По крупности частиц различают пески: гравелистые , крупные , средней крупности, мелкие и пылеватые с соответствующим соотношением частиц от 2 мм до 0,05 мм в % от веса воздушно-сухого грунта. Песчаные грунты из гравелистых, крупных и средней крупности песков мало сжимаемы и при достаточной мощности слоя служат прочным и устойчивым основанием зданий и сооружений.

Глинистые грунты относятся к категории связных грунтов с размерами плоских частиц, не превышающими 0,005 мм, и толщиной менее 0,001 мм. Глинистые частицы скреплены силами внутреннего сцепления, величина которого зависит от влажности грунта. Глинистые грунты пластичны, т.е. способны при увлажнении переходить из твердого состояния в пластическое и даже в текучее. Глинистые грунты, находящиеся в твердом сухом состоянии, служат прочным основанием.

К глинистым грунтам относятся также суглинки и супеси, содержащие наряду с глинистыми частицами примеси песка. Содержание этих примесей характеризуется так называемым «числом пластичности». Для супесей это значение составляет от 0,01 до 0,07, для суглинков – от 0,07 до 0,17.

При наличии в глинистых грунтах до 15 – 25 % (по весу частиц крупнее 2 мм к указанным наименованиям должны прибавляться термины «с галькой» («со щебнем») или «с гравием» («с дресвой»); если же содержание частиц составляет 25 – 50 % (по весу) прибавляются термины «галечниковый» («щебенистый»), «гравелистый» («дресвянистый»). При наличии частиц крупнее 2 мм более 50 % (по весу) грунты относятся к крупнообломочным.

В зависимости от степени влажности или степени заполнения пор водой различают грунты маловлажные , влажные и насыщенные водой. Крупнообломочные и песчаные грунты с крупностью частиц выше средней при увлажнении мало сжимаемы и могут служить устойчивым основанием. Увлажнение мелкозернистых песчаных грунтов снижает их несущую способность тем больше, чем меньше размеры частиц грунта. Особенно сильно влияет на снижение несущей способности грунта увлажнение пылеватых песков с глинистыми и илистыми примесями. Такие грунты в водонасыщенном состоянии становятся текучими и называются плывунами . Возведение зданий на таких грунтах требует дополнительных мер по усилению основания.

В строительной практике встречаются насыпные грунты – искусственные насыпи, образованные в результате культурной и производственной деятельности человека. Такие грунты формируются при засыпке оврагов, высохших водоемов, на месте свалок и отходов производства и т.п.

Плотность насыпных грунтов часто зависит от характера подстилающего слоя и состава насыпи (наличие мусора, шлаков и др.). Вопрос об использовании насыпных грунтов в качестве основания для зданий и сооружений рассматривается в каждом отдельном случае в зависимости от характера грунта и возраста насыпи. Так, например, песчаные насыпи, в своей основе содержащие песок, самоуплотняются через 2-3 года, а глинистые – через 5 – 7 лет, после чего они могут быть использованы в качестве естественного основания. Несущая способность глинистых грунтов при их увлажнении значительно снижается. При замерзании влажных глинистых грунтов основания происходит замерзание воды в порах: происходит так называемое «пучение», которое часто является причиной деформаций фундаментов и зданий. Поэтому глубина заложения фундаментов от уровня земли на глинистых грунтах должна быть, как правило, ниже глубины зимнего промерзания на 15 – 20 см.

Глинистые грунты (например, лессы и лессовидные ), обладающие в природном состоянии видными невооруженным глазом крупными порами (макропорами), называют макропористыми грунтами. При увлажнении такие грунты из-за содержания в них растворимых в воде извести, гипса и других солей теряют связность, быстро намокают и при этом уплотняются, образуя просадки. Указанные грунты называют просадочными и для обеспечения необходимой прочности и устойчивости возводимых на таких грунтах зданий и сооружений должны выполняться специальные мероприятия по укреплению грунтов основания и по защите их от увлажнения.

Грунтовые воды образуются в результате проникновения в грунт атмосферных осадков. Дойдя до водонепроницаемого слоя («водоупора»), например слоя глины, вода стекает по его склону, просачиваясь через водопроницаемые слои (крупнозернистые и т.п.). Уровень дренируемой воды зависит от близости водоупора к поверхности, от сезонных колебаний уровней воды в водоемах местности и т.п. Этот уровень, называемый уровнем грунтовых вод , может изменяться еще и от проникновения воды сверху – так называемой верховодки при таянии снегов, дождях и при наличии прослоек глинистых грунтов, задерживающих движение воды.

В зависимости от гидрогеологических условий, слои грунта могут быть в различной степени насыщены грунтовой водой. Крупнозернистые грунты содержат ее в том случае, если ниже них залегают водоупорные слои. Мелкозернистые грунты могут содержать грунтовую воду частично или полностью, а глинистые грунты в силу своей большой влагоемкости чаще всего имеют только капиллярную (связную) воду.

Грунтовые воды, содержащие растворенные примеси солей и других веществ, разрушающих материал фундаментов, называют агрессивными.

Для защиты от агрессивных грунтовых вод создаются специальные конструкции, способные работать в агрессивной среде и защищающие фундаменты от разрушения (СНиП 3.02.01-83).

Грунты, имеющие в своем составе лед, называют мерзлыми. Грунты, промерзающие только в течение одного зимнего времени, называются сезонно-мерзлыми; сохраняющие мерзлое состояние непрерывно в продолжении долгих лет – вечномерзлыми. Сезонно-мерзлые грунты в зимнее время под воздействием нулевой или отрицательной температуры района строительства промерзают на некоторую глубину.

Промерзание некоторых из этих грунтов может вызвать их пучение . Грунты, в которых присутствует значительное количество глины (супеси, суглинки и глины), называют вспучивающимися при замерзании. Остальные грунты (пески, гравелистые и др.) составляют группу невспучивающихся при замерзании. Силы пучения всегда направлены снизу вверх, в процессе замерзания или оттаивания происходит смещение отдельных участков поверхности относительно друг друга. По степени пучения грунты разделяются на сильно пучинистые, пучинистые и непучинистые. Более всего пучинят глинистые грунты. При насыщении водой в небольшой степени пучинят мелкие пески. Крупнообломочные и песчаные грунты крупных фракций не пучинят даже в насыщенном водой состоянии. В скальных породах и крупнообломочных грунтах деформации грунта, развивающиеся при замерзании, незначительны либо вовсе отсутствуют.

К группе фундаментов на естественном основании относятся ленточные, столбчатые и плитные фундаменты. Глубина заложения таких конструкций определяется в первую очередь физико-механическими свойствами грунта и действующими на них нагрузками. Также влияют конструктивные особенности сооружения такие как: наличие или отсутствие подвала, высота расположения пола первого этажа относительно уровня земли и другие. Как правило, конструкция фундамента выполнена из железобетона. Она может быть монолитной, изготавливаемой непосредственно на строительной площадке из товарного бетона, или сборной, изготавливаемой из стандартных элементов, которые в свою очередь изготовлены на заводе железобетонных конструкций. Отличие составляют плитные фундаменты, которые изготавливаются только монолитными, за редким исключением.

Плитный фундамент

Плитные фундаменты (сплошная плита под всем зданием) у простого обывателя вызывают «уважение». Кажется, что они очень надежные и вместе с тем дорогостоящие из-за большого объема бетона. По поводу надежности и универсальности применения плитных фундаментов сказать ничего нельзя, это действительно так. Особенно если в доме предусмотрен подвал или цокольный этаж. А вот по поводу большого объема бетона и, соответственно, дороговизны – тут можно поспорить. В настоящее время разработаны целые системы опалубок, которые позволяют создавать пустоты в теле плиты. Пустоты в теле плиты, в так называемом «нейтральном» слое, ничуть не ухудшают прочностных и деформационных характеристик конструкции, а при этом позволяют «сэкономить» до сорока процентов объема бетона. Также разработаны системы опалубок, позволяющие создавать ребристые фундаментные плиты, ребра плиты направлены в низ. В таких плитах, по сравнению со сплошными конструкциями, возможно «сэкономить» шестьдесят и более процентов бетона. Правда, стоит отметить, такие конструкции не рассчитаны на большие нагрузки. Не из-за прочности самой ребристой плиты, а из-за того, что при такой конструкции и высоких нагрузках возрастают деформации грунта основания под плитой (осадка). Выше указанные конструкции являются «идеальными» для малоэтажного строительства, когда нет необходимости строить выше трех–четырех надземных этажей. Мало того,. что они вполне сопоставимы по объему бетона с ленточными фундаментами, они позволяют избежать попадание радона (инертный газ, выделяемый из грунта) в здание. Этим «не может похвастаться» ни один тип фундамента с полом подвала, устраиваемым по грунту. Разумеется, данное решение весьма высокотехнологичное и требует тщательной проработки проекта и, соответственно, грамотного исполнения. Некоторым «особо опытным» строителям оно придется не по вкусу.

Ленточный фундамент

Ленточные фундаменты выполняются, когда здание запроектировано с несущими стенами. Большинство малоэтажных построек и некоторые многоэтажные здания выполняются с несущими стенами. В высотном строительстве, как правило, несущим является каркас. Размеры ленточных фундаментов и глубина их заложения зависят от физико-механических свойств грунтов и действующих нагрузок. Для небольших объемов строительства или при отсутствии возможности использовать сборные железобетонные элементы, выполняются монолитные ленточные фундаменты. Они просты в исполнении, достаточно дешевы и не требуют особой квалификации от исполнителя. При большом объеме строительства и наличии возможности, ленточные фундаменты выполняются из сборных железобетонных элементов. Сроки изготовления таких фундаментов существенно меньше, чем в монолитном исполнении. Кроме того, их можно выполнять и при отрицательных температурах наружного воздуха, без специальных дополнительных мероприятий. В строительных нормах и правилах нет никаких ограничений по возможности применения ленточных фундаментов. Единственным ограничением может быть экономическая целесообразность. При «плохих» физико-механических свойствах грунта и больших нагрузках, ленточные фундаменты могут оказаться весьма дорогими. Для «специфических» грунтовых условий, а именно: просадочные свойства грунта, возможность морозного пучения, карстовые явления и так далее, необходима тщательная проработка проектных решений ленточных фундаментов. В целом, ленточные фундаменты «конкурентоспособны» при обычных грунтовых условиях и небольших нагрузках.

Столбчатый фундамент

В случае, когда сооружение выполнено в каркасной конструктивной системе и имеются «хорошие» грунтовые условия, применяются так называемые столбчатые фундаменты. Каркасная конструктивная схема (колонны и балки) применяется не только для высотных зданий. В каркасной конструктивной системе выполняют практически любые объекты при подтверждении экономической целесообразности. Столбчатый фундамент представляет собой плиту небольших размеров непосредственно под колонну каркаса. Столбчатые фундаменты также как и ленточные, могут выполняться либо монолитными, либо сборными. Критерием выбора также служит наличие возможности и объемы строительства. Пожалуй единственным недостатком столбчатых фундаментов является то, что их нельзя применять в «плохих» грунтовых условиях. Весьма эффективно применение столбчатых фундаментов на грунтах с искусственно измененными физико-механическими характеристиками. В данном случае они будут относиться к группе фундаментов на искусственном основании.

Прочность и устойчивость любого сооружения обеспечивается, прежде всего, прочностью и устойчивостью фундамента, который должен быть заложен на надежном основании.

Основанием называется толща естественных напластований грунтов, непосредственно воспринимающая нагрузку и взаимодействующая с фундаментом возводимого сооружения.

Основания называют естественными , если грунты под подошвой фундамента остаются в естественном состоянии. В случае недостаточной прочности грунтов принимают меры по искусственному их упрочнению. Такие основания называют искусственными . Естественным основанием

могут служить самые разнообразные грунты, слагающие верхнюю часть земной коры. Естественные грунты, используемые в качестве естественных оснований, подразделяют на четыре вида: скальные, крупнообломочные, песчаные и глинистые.

Несущая способность глинистого грунта в большой степени зависит от влажности. Несущая способность сухих глин довольно высокая и такие грунты могут служить хорошим основанием, при увеличении влажности их несущая способность значительно падает.

Супеси и мелкозернистые пески при разжижении водой становятся я настолько подвижными, что текут, как жидкость, и называются плывунами.

Возведение зданий на таких грунтах связано со значительными трудностями.

К глинистым грунтам относятся также лёссы , которые при замачивании водой обладают просадочными свойствами или набухают. Использование так их грунтов в качестве оснований требует применения специальных мер.

Помимо перечисленных видов встречаются также грунты с органическими примесями (растительный грунт, торф, болотистый грунт и др.), многолетнемерзлые и насыпные грунты. Грунты с органическими примесями в качестве естественных оснований не применяют, так как они неоднородны по своему составу, рыхлы, обладают значительной и неравномерной сжимаемостью. Насыпные грунты также неоднородны по составу и сжимаемости и их использование в качестве оснований требует особых обоснований.

Упрочнение грунтов путем поверхностного ил и глубинного их уплот- нения осуществляется трамбованием пневматическими трамбовками с втрамбовыванием щебня ил и гравия. Уплотнение трамбовочными плитам и массой 1 т и более, которые сбрасывают с высоты 3–4 м, доходит до глубины 2–2,5 м. Для уплотнения больших площадей применяют укатку грунта тяжелыми катками.

Песчаные и пылеватые грунты хорошо уплотняют вибрированием специальным и поверхностными вибраторам и, такое уплотнение осуществляется значительно быстрее, чем при трамбовании.

Глубинное уплотнение грунта осуществляют применением песчаных или грунтовых свай. Предварительно вибропогружателем вводят в грунт инвентарные стальные трубы диаметром 400–500 мм с остроконечным раскрывающимся стальным башмаком на конце. Погруженные на необходимую глубину трубы заполняют песком и затем извлекают с вибрированием. При таком извлечении песок уплотняется и хорошо заполняет скважину.


Закрепление слабого грунта основания (его упрочнение) достигается также применением тампонажа (цементации, силикатизации и битумизации).

Фундаментом (рис. 1.1) называется подземная часть сооружения, возводимая на естественных ил и искусственных основаниях и служащая для передач и нагрузок от сооружений на основания. Конструктивная форма фундамента позволяет обеспечить бол ее равномерное распределение давления от сооружения на грунт.

Верхняя граница между фундаментом и наземной частью сооружения так же, как и границы между отдельным и уступами фундамента, называется обрезом фундамента . Нижняя плоскость фундамента, опирающаяся на грунт, называется подошвой фундамента. Расстояние от уровня земли около законченного здания (отметка планировки) до подошвы называется глубиной заложения фундамента.

Фундаменты на естественном основании. Область применения, конструктивные особенности, классификация. Инженерно-геологические изыскания и их оценка. Принципы проектирования.

Фундаменты – это подземная или подводная часть сооружения, воспринимающая нагрузки от вышерасположенных конструкций и передающая их на основания.

Фундаменты можно разделить на разновидности: фундаменты мелкого заложения на естественном основании, свайные фундаменты и фундаменты глубокого заложения .

Фундаменты мелкого заложения на естественных основаниях.

Фундаменты мелкого заложения на естественных основаниях называют такие фундаменты, которые сооружают в открытых котлованах глубиной не менее 5-6 м. Основное требование к фундаментам - их достаточная прочность , долговечность , морозостойкость , стойкость против агрессивного воздействия подземных вод .

Фундамент должен иметь такие размеры, чтобы среднее давление по подошве (под подошвой) фундамента не превосходило расчетного сопротивления грунта основания. Кроме того, расчетные значения абсолютных осадок и разностей осадок между отдельными фундаментами одного сооружения не должны превосходить установленных нормами проектирования предельных значений.

Для устройства фундаментов используют железобетон , бетон , бутобетон , бутовую кладку , иногда – цементогрунт .

Разновидности фундаментов мелкого заложения:

1) отдельные фундаменты под колонны в сочетании с фундаментными балками (рандбалками);

2) столбчатые фундаменты под кирпичные стены ;

3) ленточные фундаменты под кирпичные стены (непрерывные);

4) ленточные фундаментыпод колонны ;

5) фундаменты из перекрестных лент под колонны ;

6) фундаменты в виде сплошной плиты ;

7) массивные фундаменты.

1). Отдельные фундаменты под колонны в сочетании с фундаментными балками (рандбалками) применяются обычно в промышленных зданиях при не слишком больших нагрузках на грунт, достаточно прочных имало сжимаемых грунтах, гибкой схеме работы надземной части здания, когда колонна и ригели или колонна и ферма соединены шарнирно.

Различаются способом крепления фундамента с колонной.

Чаще всего:

а) замоноличивание (мелкие колонны) (рисунок 1:1).


Рисунок 1.1. 1 – бетон на мелком заполнителе не ниже класса бетона самого фундамента (не ниже В20); 2 – стакан;

б) большие колонны – без стакана, жесткий стык – сварка и стык замоноличивается бетоном.


Рисунок 1.2.

2). Отдельные фундаменты под кирпичную стену (бесстаканные , столбчатые ). Применяются для малоэтажных зданий, при хороших грунтовых условиях, как правило, для частного индивидуального строительства.


Рисунок 1.3. Отдельный фундамент под кирпичную стену (бесстаканный, столбчатый)


Рисунок 1.4. Поперечные сечения столбчатых фундаментов

3). Ленточные фундаменты под кирпичные стены .

Ленточные фундаменты иногда называют непрерывными. Применяются при равномерной нагрузке от стен на грунт и постоянных вдоль стены грунтовых условиях (условие плоской деформации (l/b ≥ 10).

Изменение размеров глубины заложения возможно только на отдельных участках ограниченной длины. Участки, имеющие разные размеры фундаментов, отделяются осадочными швами .

Применяются при значительных нагрузках и достаточно слабых грунтах. Несущественно изменяют жесткость сооружения. Почти не работают на изгиб в продольном направлении (при большой жесткости стен).

Рисунок 1.5. Сборный ленточный фундамент под стену


Рисунок 1.6. Ленточные фундаменты:

а - монолитный; б - сборный сплошной; в - сборный прерывистый;

1- армированная лента; 2 - фундаментная стена; 3 - стена здания; 4- фундаментная подушка; 5 - стеновой блок

Рисунок 1.8. Конструкции фундаментных плит:

а - сплошная; б - ребристая; в – с угловыми вырезами

4) Ленточные фундаментыпод колонны .

Применяются при шаге колонн не более 6 м и при наличии слабых грунтов.

Уменьшают неравномерности осадки отдельных колонн.

5) Перекрёстные ленточные фундаменты под колонны. Применяется при малом шаге колонн, при больших нагрузках и слабых грунтах. Перекрестные ленты позволяют выравнивать осадку не только отдельных колонн в ряду, но и здания в целом.

Рисунок 1.9. Перекрёстные ленточные фундаменты под колонны

6). Сплошной плитный (гладкий) фундамент. Фундаменты в виде сплошной плиты, как под колонны, так и под кирпичные стены устраивают под всем сооружением или его частью в виде железобетонных плит под сетку колонн и стен. Такие фундаменты работают на изгиб в двух взаимно перпендикулярных направлениях, имеют небольшую равномерную осадку, им не страшно подтопление поверхностными водами, а также они защищают подвальные части здания. Размеры таких фундаментов обусловлены размерами сооружения в плане.

Рисунок 1.10. Сплошной плитный (гладкий) фундамент под колонны

Рисунок 1.11. Сплошной плитный (гладкий) фундамент

Рисунок 1.12. Фундамент в виде сплошной плиты

Рисунок 1.13. Плитные фундаменты со сборными стаканами

Рисунок 1.14. Плитный фундамент с монолитными стаканами

Рисунок 1.15. Плитный ребристый фундамент

Рисунок 1.16. Сплошной фундамент под группу колонн

Рисунок 1.17. Сплошной коробчатый фундамент

7) Массивные фундаменты - это фундаменты массивных сооружений с массивной подземной частью (фундаменты плотин, мостовых опор, доменных печей, дымовых труб, под машинное оборудование с динамическими нагрузками). Они создают большую инерцию, препятствуют колебаниям, уменьшают амплитуду, скорость, ускорение колебаний и т.д.

Рисунок 1.18. Массивный фундамент под доменную печь

Рисунок 1.19.Фундамент доменной плиты

Рисунок 1.20. Основания под печи, располагаемые в нижнем этаже здания:

а - у каменных стен здания; б - в проемах стен на уширении их фундаментов 1 - печь; 2 - гидроизоляция; 3 - предтопочный стальной лист; 4 - деревянный пол; 5 - кирпичный бутовый или бетонный фундамент; 6 - песок; 7 - открытая отступка; 8 - кирпичная стена; 9 - заделка раствором; 10 - перемычки стены; 11 - глухая разделка толщиной в полкирпича

По способу устройства фундаментов в котловане различают монолитные и сборные .

Содержание статьи

ФУНДАМЕНТ, подземная или подводная часть сооружения, которая передает его грунтовому основанию статическую нагрузку, создаваемую весом сооружения, и дополнительные динамические нагрузки, создаваемые ветром либо движением воды, людей, оборудования или транспорта. Правильно спроектированный фундамент передает все нагрузки грунту таким образом, что исключается возможность недопустимой осадки и разрушения сооружения. Как правило, это достигается распределением нагрузки по достаточно большой площади, выемкой грунта до уровня крепких пород, залегающих на большей глубине, применением свай, погруженных в слой слабых пород до слоя более крепких, или укреплением поверхностного слоя слабого грунта. Если всю площадь опоры образует скальный грунт, то осадка будет ничтожно малой. Трудности возникают, когда сооружение требуется возвести на грунте с высокой сжимаемостью, особенно если она меняется.

Основные виды фундаментов: фундамент на естественном основании, плавучий сплошной фундамент и свайный фундамент с забивными и набивными сваями. Особое место занимают специальные подводные фундаменты.

Фундаменты на естественном основании.

Такие фундаменты бывают сплошные плитные (из железобетонных плит) и перекрестные (в виде решетки из железобетона, стали, а иногда из дерева). Площадь контакта фундамента с грунтом должна соответствовать нагрузке с учетом предполагаемого отпора грунта. Максимальный отпор (реактивное давление) грунта определяется экспериментально на основе принципов механики грунтов, и в государственных строительных нормах даются таблицы допускаемого отпора грунта для тех или иных географических зон. Фундамент должен быть правильно рассчитан на сопротивление изгибу и сдвигу. Подошва фундамента должна быть ниже максимальной глубины промерзания грунта, чтобы не сказывалось вспучивание грунта при замерзании. Безопасная глубина зависит от годовых колебаний температуры, от типа и диапазона вариаций местных грунтов и от нормального уровня подземных вод. Кроме того, иногда наблюдаются сезонные изменения объема глинистых грунтов, чего нельзя допускать под фундаментом, заложенным на естественном основании.

В очень холодных регионах, например арктических, грунт промерзает на большую глубину и оттаивает лишь в верхнем слое толщиной 0,5–3 м. В таких условиях «вечной мерзлоты» необходим особый подход к строительству фундамента на естественном основании. Обычно предусматривается теплоизоляция между верхней частью сооружения и подошвой его фундамента, предотвращающая таяние подпочвы с последующим вспучиванием грунтового основания при повторном замерзании.

Плавучий фундамент.

На глубоких пластах грунта с высокой сжимаемостью применяются расширенные сплошные фундаменты, которые поддерживают сооружение как бы «на плаву» в пластичном грунте. Если сплошной фундамент правильно спроектирован, то осадка и перекосы равномерно распределяются по всему сооружению и в верхней части сооружения не возникает серьезных деформаций.

Считается, что сплошной фундамент будет плавучим, если его масса с учетом всех нагрузок примерно равна массе вытесненного грунта (или воды); тогда достигается равновесие, и большая осадка не возникает. Это правило предъявляет несколько завышенные требования к глубине. Благодаря внутреннему трению грунт выдерживает более значительную нагрузку, нежели вес вынутого грунта, хотя и при несколько большей осадке. Для равномерного распределения нагрузки, передаваемой грунтовому основанию колоннами, применяются плиты и балки из преднапряженного бетона, перевернутые арки с бетонными плитами, распределительные фундаментные решетки, перевернутые арки с ребром и оболочки. Фундамент должен быть правильно рассчитан на сопротивление изгибу, сдвигу и нормальным силам.

Забивные сваи.

В случае слабых грунтов применяются фундаменты, в которых основными элементами, передающими нагрузки от сооружения основанию, являются сваи, погружаемые в грунт. Нагрузки передаются не только за счет опорного давления, но и за счет бокового трения об уплотненный грунт. Благодаря частичной разгрузке окружающим грунтом сваи свайного «куста» меньше нагружаются, чем отдельно стоящие сваи.

Забивные сваи могут быть деревянными, бетонными и стальными. Деревянная свая (шпала) представляет собой обработанное бревно диаметром около 30 см в головке (комле) и длиной 3–15 м. Бревна должны быть прямыми, ошкуренными, со срезанными под корень сучками. Для увеличения трения на боковых поверхностях деревянные сваи иногда снабжают деревянными или металлическими обручами. Бетонные сваи могут изготавливаться либо на месте, либо в заводских условиях. Сборные сваи должны быть обязательно хорошо армированы сталью, чтобы они не боялись погрузки-выгрузки и ударов при забивании. Стальная свая допускает наращивание до ~90 м и обычно представляет собой двутавровый профиль или трубу подходящей длины. Стальная обсадная труба диаметром 20–60 см после погружения в грунт, заполняется бетоном. Применяются рифленые с поверхности толстостенные стальные трубные сваи со стальным сердечником на конце для ослабления удара при вхождении в грунт. Такие сваи-оболочки тоже заполняются бетоном. Для повышения прочности в трубные сваи-оболочки обоих типов вставляют стальной двутавровый профиль. Иногда внутренний бетон выбивают наружу из нижнего конца сваи, создавая тем самым расширенную опору. Погружение свай в грунт осуществляют забивкой, вдавливанием, вибрированием и завинчиванием. Забивку свай производят с помощью копровых установок с паровоздушными и дизель-молотами. Процесс погружения сваи в песчаный и гравийный грунт значительно облегчается и ускоряется, если грунт под нижним концом сваи размывается сильной струей воды, для чего в теле сваи может быть оставлен канал или смонтирована труба для подачи воды (под давлением около 0,7 МПа).

Набивные сваи.

Набивные сваи применяются в тех случаях, когда сооружения повышенной тяжести приходится устанавливать на прочном грунте, покрытом сверху толстым слоем слабого. Для этого в слабом грунте бурят скважину до слоя скальной породы, ортштейна или гравия и заполняют ее бетоном. Для умеренно прочных грунтов пригоден т.н. чикагский способ: грунт вынимают последовательно секциями по 1,5 м, закрепляя каждую деревянной боковой опалубкой перед тем, как приступать к разработке грунта следующей секции. Построенная таким образом набивная свая передает нагрузки от опоры колонны непосредственно прочному грунту. Иногда ее для увеличения площади опоры расширяют на нижнем конце, если он не доходит до скальной породы. Часть нагрузки передается грунту за счет трения на боковых поверхностях сваи.

Кессонные набивные сваи изготавливают, забивая паровым копром в грунт широкий открытый с торцов стальной обсадной цилиндр. Затем из погруженного цилиндра вынимают грунт и заполняют освободившееся пространство бетоном, предварительно вставив внутрь для армирования, если это необходимо, двутавровый стальной профиль. Стальная обсадная труба, оставленная в скважине, повышает прочность сваи пропорционально площади своего поперечного сечения и модулю упругости.

Подводные фундаменты.

Для обеспечения безопасного пространства для рабочих и оборудования строительство подводного фундамента начинают с того, что строят шпунтовое ограждение или опускной колодец. Эти водозащитные приспособления позволяют удалить с места расположения будущего фундамента воду и грунт, расчистить его и выполнить необходимые работы с точностью, возможной на сухом грунте.

Шпунтовое ограждение.

Шпунтовые ограждения наиболее подходят при малых глубинах воды, хотя известны случаи, когда они применялись при глубине до 30 м. Такие ограждения строятся из деревянных или стальных шпунтовых свай, устанавливаемых в один или два ряда и скрепляемых так, чтобы они выдерживали напор воды. Межсвайный промежуток двухрядного ограждения заполняется уплотненным грунтом, что препятствует протеканию воды. Ячеистое шпунтовое ограждение делается из замкнутых цилиндрических стальных ячеек, заполненных грунтом. Вода откачивается из зоны ограждения насосами.

Опускной колодец.

Открытый опускной колодец представляет собой полую цилиндрическую оболочку, по размерам соответствующую фундаменту и внутри хорошо укрепленную поперечными стенками. Обычно опускной колодец применяется для устройства глубоких опор, передающих давление на нижние, более прочные слои грунта. Колодец опускают на дно, заполняют его внутренний ряж камнем, и сверху настраивают кессонную набивную сваю. Грунт вынимают через скважины: илистый – откачкой, а плотный – подъемником с многочелюстным грейферным землечерпальным ковшом. Погруженный колодец и кессонные сваи, образованные путем набивки бетоном грунтоподъемных скважин, служат фундаментом для устоя – опоры верхней части сооружения. Бетон для укладки на этом фундаменте подводится по металлическому бетоноводу диаметром не менее 20 см, опущенному сверху под воду. Бетоновод можно также опустить непосредственно на дно.

Кессоны.

Кессоны применяются на большой глубине, не позволяющей установить шпунтовое ограждение. Кессон представляет собой большую неглубокую стаканоподобную оболочку, которая в перевернутом виде опускается на дно водоема. Размеры кессона определяются площадью грунтового основания, соответствующей полной проектной нагрузке при заданном допускаемом отпоре донного грунта. Если кессон лежит на скальном грунте, то по диаметру он может лишь немного превышать опору закрепляемого на нем устоя или другого опорного элемента конструкции. Высота кессона определяется уровнем грунтового основания и уровнем высоких вод. Следовательно, предварительно необходимо получить данные об уровне и характере грунтового основания. Кессоны обычно изготавливают на суше, буксируют на понтонах на место закладки фундамента и крепят к кустовым сваям. Если глубина воды недостаточна для буксировки на плаву, то кессон можно собрать на сваях в нужном месте и потом опустить на дно.

Рабочая камера предусматривается по всей площади кессона; ее высота составляет около 2 м. К камере непрерывно подводится сжатый воздух под давлением, исключающим возможность натекания воды. Рабочие входят в камеру повышенного давления и выходят из нее через воздушный шлюз, который служит также для выгрузки вынутого грунта и снабжения строительными материалами. Грунт разрабатывается на дне и под острыми кромками стенок, так что кессон постепенно опускается под собственным весом и весом настраиваемого устоя. При этом давление в нем повышается соответственно наружному давлению. Когда кессон достигает прочного грунта, на котором он должен лежать, его рабочую камеру заполняют уплотненным бетоном, служащим фундаментом для устоя или другой опоры.

Кессон обычно громоздок и неудобен в управлении. Волны затрудняют его установку, а неравномерное боковое давление грунта мешает точно направлять его путем выемки грунта под острыми кромками стенок. В зависимости от прочности грунта и условий работы скорость погружения кессона в грунт может составлять от 3 см до 2,5 м в сутки. Максимальная известная глубина погружения кессона под воду составляет около 40 м. Избыточное давление на такой глубине (в 3,5 раза превышающее атмосферное) находится на пределе допустимого для человеческого организма.

Люди, длительное время работающие в условиях повышенного давления воздуха, подвержены двум специфическим заболеваниям. Одно, менее серьезное, по симптомам напоминает простуду («забитый нос») и может перейти в пневмонию. Другое – кессонная болезнь (воздушная эмболия) – нередко вызывает паралич с летальным исходом.

Опоры моста.

Опоры моста (устои и быки) – это элементы, промежуточные между фундаментом и верхней частью мостового сооружения. Однако их часто относят к фундаменту. Устои, которые обычно представляют собой бетонные стены, поддерживающие береговые концы моста и удерживающие грунтовое заполнение его въездной части, выполняются заодно со своим фундаментом и передают нагрузку непосредственно грунтовому основанию. Быки же, подобно колоннам, опираются на свои фундаменты и поддерживают верхнюю часть сооружения. Фундаменты мостовых опор могут быть на естественном основании, свайными или кессонными и проектируются так, чтобы они выдерживали все нагрузки и защищали конструкцию от вымывания грунта водным потоком.

Временные фундаменты.

Когда требуется заменить или укрепить фундамент, его заменяют или усиливают по частям, применяя при необходимости боковые подпорки и подпорные балки.

Замена по частям.

На коротких участках через определенные интервалы вынимают грунт под старыми фундаментами до нового грунтового основания. В образовавшихся котлованах строят участки новой стены с соответствующими фундаментами и соединяют их с нижней частью старой стены. Когда эти участки стены завершены, они поддерживают старую стену до завершения разработки грунта на оставшихся промежуточных участках и сооружения новых пристроек стены.

В другом варианте усиления фундамента в грунт под стеной с некоторыми интервалами забивают металлические трубы. Когда трубы доходят до нового грунтового основания, их очищают изнутри от грунта и заполняют бетоном вплоть до нижнего обреза стены. Эти трубные сваи поддерживают стену во время сооружения пристроек стены и новых фундаментов.