Подставка под ведро для экономии и удобства пользования водой в саду. Экономия электроэнергии Приборы для экономии электроэнергии

Владимир

Ну, про «вечные двигатели на магнитах» есть куча статей в тырьнете и этой темы касаться нет смысла — пока кто-то из этих авторов не соберёт действующую модель, которая хоть что-то бы выдавала на выходе (хоть символические микровольты!).
А пока авторам это сделать всё что-то мешает — то нет специального сплава для магнитов, то нет специального оборудования для их замысловатого намагничивания и т.д. и т.п!
А стоит обсудить то, что можно проанализировать имея элементарные знания и опыт — на уровне пионеров-юных радиолюбителей (из которых например, я и сам вышел — много десятков лет тому назад). К сожалению автор не прошёл даже такой начальной школы, а поэтому для него будет полезно ознакомиться с небольшим количеством элементарных фактов, которые я изложу.
Чтобы выяснить что кулер выдаст (а, точнее — ничего не выдаст) — достаточно его продуть пылесосом (как уже было предложено), а к выводам подсоединить тестер (мультиметр). Как вариант можно скрепить пару одинаковых кулеров одной (выдувающей) стороной друг к другу. «склейте» их небольшими кусочками пластилина или перетяните их парой резинок. На один кулер подайте 12 V, а с выводов второго — снимайте показания подключив тестер.
Понятно что он ничего не покажет — ни переменное ни постоянное, или это будут считанные милливольты (как самый лучший вариант) наведённые на коммутируемых обмотках и которые возможно, пройдут через переходы транзисторов. Как уже было сказано там стоит микросхема-коммутатор которая через транзисторные ключи попеременно подаёт напряжение на несколько обмоток, магнитное поле которых взаимодействует с постоянными магнитами в роторе (вертушке). Понятное дело что даже мизер того что может пройти через переходы транзисторов — не будет постоянным током, поскольку нет фильтрации пульсирующего тока (в виде электролитов).
Вообще чтобы понимать какие мощности можно получить с таких устройств — важно знать что обратимые электрические моторы-генераторы (а любой классический электродвигатель может работать как генератор) не могут по определению дать больше той мощности которую потребляют сами как электродвигатели.
Такие кулера имеют мощность потребления 1,5-2 W. и при работе его в режиме генератора, его мощность будет ещё менее той что он потребляет сам, как электродвигатель.
Понятно, что такие опыты можно проводить с обычными «моторами» без всяких электронных коммутаторов внутри.
Помнится что в Юном технике 70-х годов была описана самоделка из детского моторчика от игрушки, на котором был собран генератор с нагрузкой на лампочку от фонаря. При этом на вал предлагалось установить пропеллер. И как утверждал автор статьи, при установке этого «ветряка» на велик — вырабатывалась мощность достаточная для освещения дороги в ночное время.
Лично я думаю что мощности того генератора вполне хватило бы для питания современного сверхъяркого светодиода (опять же — для этого нужно было поставить выпрямитель и отфильтровать ток), но для питания лампы накаливания на ток 0,25-0,35 А (а именно такие стояли в фонариках) — явно недостаточно.
Итак автор предлагает получить от кулера мощностью в 2 W — мощность для питания трёх ламп по 70 W — т.е. 210 W?
Но как уже понятно — на выходе его не будет никакого напряжения, ни в 1V, ни тем более в 12V, и тем более постоянного!
Далее автор предлагает использовать преобразователь на 220 V. Но по фото видно что это — обычный блок питания с трансформатором! А что из себя представляет классический трансформаторный БП на 10-12 W — а именно такой китайский БП показан на фото (заметьте 10-12 W, а нам нужна мощность в 210 W!)?
Итак в упрощённом виде это — трансформатор (с понижающим коэффициентом трансформации), выпрямитель (диодный мост) и фильтр (электролитические конденсаторы). Стабилизатора в нём скорее всего — нет.
Ну ведь, просто представляя схему этого БП совершенно понятно что подав на его выход постоянное напряжение (которое как наивно полагает автор, должно появиться на выводах кулера), вы не получите — ничего! Неважно — окажутся ли диоды моста включенными в прямом или в обратном направлении… В первом случае на обмотку поступит постоянный ток, а во втором — нет. Но при этом на выходе трансформатора не появиться никакого напряжения — ни постоянного ни переменного! И убрав диоды — вы ничего не получите, поскольку чтобы трансформатор вам сделал из 12 V>220 V, на него нужно подать ПЕРЕМЕННОЕ напряжение!
Опять же не забывайте что БП у нас (по внешнему виду) не более 12W, а значит и его выходная мощность (в инверсном включении) не будет превышать 12W!
Автор как я понял не понимает разницы между обычными трансформаторными БП и преобразователями, но при этом нужно понимать что если преобразователь преобразует переменное напряжение 220 V — в низкое постоянное (например как компьютерных БП), то их нельзя использовать для получения переменного напряжения 220 V из низкого постоянного напряжения — лишь «включив его наоборот», как наивно полагает автор. Для этих целей можно использовать лишь тот преобразователь, который изначально создан для получения из постоянного, низкого в переменное-сетевое (как например ИБП для компьютеров). И это совершенно понятно любому радиотехнику — поскольку схемные решения (способы) для получения требуемых выходных напряжений у них различны!

С ростом цен на энергоносители, в частности на электроэнергию, а также с увеличением количества домашних бытовых электроприборов у каждого, подключенного к энергоснабжению, потребителя появляется абсолютно логичное решение о принятии мер по её экономии. Существует множество способов экономии затраченного электричества, однако, не так давно появился новый, как утверждает изготовитель, инновационный прибор, который значительно уменьшит расход электрической энергии как в квартире, так и в доме. Он называется экономитель. Что это такое, как работает этот супер прибор, из чего состоит он? А также интересующий всех, главный вопрос - правда или ложь, что он поможет сэкономить. Перед его эксплуатацией и покупкой нужно разобраться более углублённо и тщательно. В этой статье редакция сайта расскажем вам всю правду о том, что такое экономитель электроэнергии и на чем разводят людей.

Как выглядит экономитель и из чего он состоит

Данное устройство выглядит очень компактно и стоит совершенно недорого, что в принципе и подкупает потребителя, а также побуждает его расстаться со своими кровно заработанными деньгами во благо будущей огромной экономии. Как утверждает рекламный текст на них — «чудо» аппарат не только сэкономит затраты электроэнергии, но даже каким-то образом сможет защитить все включенные в розетки электроприборы от во время грозы и попадания молнии. Ниже представлен самый часто встречающийся в магазинах прибор для экономии электричества, который изготовитель называет Electricity Saving Box.

На лицевой панели установлены два светодиода, сигнализирующие об исправности экономителя и его готовности выполнять возложенные на него функции. Он может иметь несколько переходников для подключения к разным по конструкции розеткам, для того чтобы он мог быть более универсален. Конструкция экономителя энергии также может иметь различные формы прямоугольные или круглые, от этого суть его работы не меняется.

На тыльной части указаны технические параметры экономителя электроэнергии:

  • Модель.
  • Рабочее напряжение от 90 до 250 В.
  • Частота переменного тока в электросети, 50 Гц-60 Гц.
  • Максимальная мощность нагрузки, при которой он эффективен 15 000 Вт, то есть 15 кВт.
  • Серийный номер.

Некоторые из экземпляров рассчитаны на довольно большие нагрузки, что в первую очередь должно насторожить покупателя, иногда бывают такие модели, что указана мощность даже до 40 кВт. При такой мощности ток должен быть примерно 180 А, что в бытовых условиях не применяется, так как вводные автоматы чаще всего имеют номинальный рабочий ток 25, ну или же 63 А максимум. Ну, допустим, пусть это максимальный показатель экономителя, и он работает в пол силы, с запасом по мощности.

Принцип работы прибора для экономии электроэнергии, как опять же утверждают рекламные ресурсы и производитель, основан на преобразовании реактивной составляющей в активную и отдаче её в сеть, тем самым экономитель убирает реактивную составляющую из сети. Действительно, мощность потребляемая из сети содержит как активную, так и реактивную составляющую. На крупных подстанциях предприятий устанавливаются так называемые компенсаторы реактивной мощности, которая создаётся большими индуктивными нагрузками. Она появляется вследствие работы асинхронных двигателей, трансформаторов и всего того, что переделывает электроэнергию в электромагнитное поле. Компенсирующими устройствами служат:

  1. Включаемые поперечно батареи конденсаторов.
  2. Реакторы.
  3. Синхронные двигатели в режиме компенсации (перевозбуждения).

Вот так вот выглядят компенсаторы реактивной мощности, на основе конденсаторной батареи:

Однако счётчики, установленные на предприятиях и распределительных подстанциях, ведут учёт как активной, так и реактивной составляющих, а в домашних условиях стоят элементы учёта, которые считают только активную энергию. Поэтому нет смысла компенсации реактивных мощностей, тем более что в бытовых устройствах она настолько несущественная, что даже не стоит её учитывать.

Для того чтобы убедится и разобраться в устройстве экономителя, придется разобрать его и посмотреть, что же внутри его, конденсаторная компенсационная батарея или синхронный генератор. И вот, что оказывается там внутри:

А вот его схема:

Несколько электронных элементов таких как конденсатор, резисторы, светодиоды, и диодная сборка для выпрямления сетевого напряжения, и в лучшем случае её предохранитель. По сути, это электрическая схема для питания светодиодов, и не более, которая не только не даст экономии электричества, но и наоборот потребляет какую-то хоть и малую, совсем незначительную часть электроэнергии для свечения светодиодов. Приборы, подключаемые от розетки, почти не имеют реактивной энергии, да и как писалось выше, счётчик её не считает поэтому эффект экономии нулевой.

Важно! Сейчас мы говорим не только об экономителе электроэнергии Electricity Saving Box , но и о таких приборах, как Эконор и Power Saver . Все они являются разводом, никакого реального толку от их использования, а тем более экономии электрической энергии, конечно же нет! Под этой статьей мы предоставили ссылки на более рациональные и к тому же легальные способы, позволяющие меньше платить за свет!

Реальное испытание экономителя

От теоретических понятий и исследований перейдём к практике. Для того чтобы убедиться экономит ли экономитель электроэнергию, то есть заставляет крутиться счетчик при одной и той же нагрузке медленнее. Для этого существуют два практических способа, которые сможет попробовать каждый:

  1. Включить какой-либо один прибор в электрическую сеть и засечь сколько оборотов делает диск счётчика если он электромеханический, а если он электронный то сколько миганий светодиода, за определённый промежуток времени. На каждом из элементов учёта указанно, например, что 600 оборотов диска соответствуют одному киловатту. Ну это не столь важно ведь нужно внимательно просчитать количество оборотов хотя бы за 10 минут при включенном и при выключенном приборе для экономии.
  2. Второй способ более точный и быстрый. Для этого понадобится любой электроприбор, всё равно с какой потребляемой мощностью. Это можно проделать и с лампочкой, и с дрелью, так как внутри её, по сути, электрический двигатель, который является индуктивной нагрузкой. И также необходим амперметр (цифровой мультиметр), так как только при протекании электрического тока через счётчик, он будет вести учёт электроэнергии, а ток, в свою очередь, не появится без подключения нагрузки. Подключаем нагрузку через последовательно включенный амперметр и включаем её. Измерительный прибор при этом покажет силу тока в исследуемой цепи, теперь в розетку, находящуюся как можно ближе к нагрузке, включаем экономитель. Если данный прибор для экономии уменьшит, каким-то невероятным образом, показания силы тока, то это и будет доказательством того, что он эффективен и действительно работает.

Таким образом любая модель данного прибора для экономии электроэнергии, может в лучшем случаи уменьшить реактивную составляющую мощности в сетях квартиры, путём подсоединения параллельно конденсатора, но счётчики данную энергию не считают. Да и такой ёмкости будет недостаточно, для хотя бы малейшей компенсации реактивных мощностей, а тем более экономии электричества.

- Отличная вещь

Достоинства: помогает экономить

Недостатки: нет

К сожалению, в последние годы цены на электроэнергию стали неимоверны, поэтому я постоянно думаю о том, как же можно сэкономить. Я очень долго покупал всевозможные приборы для экономии, но все это полная чушь, они вообще не помогают. Вот я и решил немного прошуршать в интернете, и попробовать собрать это устройством самостоятельно своими руками.

После того как мне удалось его собрать, и я подключил устройство, сразу же стал экономить 5 киловатт. Здесь нет никаких волшебных действ, все действует только за счет физических законов продвижения электроэнергии. За месяц мне удалось сэкономить 40%.

Как экономить электроэнергию

На протяжении последнего времени, я очень часто стал наталкиваться на рекламу в интернете, о неком чудо приборе, который достаточно просто включить в розетку, и он обеспечит от 35 до 40 процентов экономии электроэнергии каждый месяц. И вот однажды я приобрел сие средство за 35 долларов, и за несколько месяц я не смог найти даже намек на экономию. После, спустя время, мы с другом решили разобрать это устройство и посмотреть что внутри его. А оказалось, что там только схема питания для светодиодов, установленных в корпусе, короче говоря, это полный развод. После всего этого, я рассказала другу все свои познания в области электротехники, и про то, какие схемы действительно позволяют достичь экономии. И тут я начал говорить ему о том, что у меня также был опыт изготовления схем для бытовых нужд для своего дома.

В первую очередь, мне хотелось бы отметить, что сэкономить у меня таким образом не получилось, но вместо этого получилось великолепное устройство для того, чтобы подавлять всевозможные помехи в домашней проводке электричества, а также замечательная грозозащита. Все подобные приборы активно используются в своей схеме накопители энергии и конденсаты. Только стоит заметить, что на сайтах в интернете есть множество ошибочных схем, во время осуществления которых возможно короткое замыкание, из-за чего могут появиться возгорание этого устройства. При чем, на каждом сайте утверждается, что им удалось добиться 50% экономии, но от этого становится просто смешно, так как такого достичь просто невозможно. Новый электрические счетчики считают энергию абсолютно по-другому, из-за этого самодельные схемы абсолютно не помогут, или вовсе навредить устройству.

Сейчас, на просторах интернете активно рекламируется некий чудо-прибор, с помощью которого можно экономить близко 30% электроэнергии собственными руками в домашних условиях. У данного прибора есть масса всевозможных названий, к примеру, SmartBox, Energy Saver, Экономыч и др. Но вот суть у них всех одна и та же, просто включаешь его в розетку и меньше платишь по счетам. В том случае, если верить словам производителей, то эти устройства обладают функциями фильтрации омех, защиты от ударов молнии, перекоса фаз и да же преобразуют реактивную электрическую энергию в активную. Но, к огромному сожалению, реализовать все это в одном устройстве, на сегодняшний день, практически невозможно. Да, и если говорить про промышленные масштабы, то добиться экономии можно будет максимум на 10-15 процентов, и даже используя дорогие и объемные устройства.

Видео обзор

Все(5)
Обнуляющая счётчик переноска ДО80%МИМ63А Экономия электроэнергии(электричества) Законная экономия электроэнергии при электронном счетчике. Подключение нагрузки через конденсатор Part 1

Эффективный экономер электроэнергии

(реально рабочий, полнейшая инструкция, уникальный материал!)

Инструкция по сборке и наладке прибора

для безучетного потребления электроэнергии

1. Предыстория. Краткий обзор версий
2. Подробное описание схемы и принцип действия
3. Детали и конструкция
4. Инструкция по сборке и наладке

Предыстория. Краткий обзор версий.

Идея создания подобного устройства возникла еще в 1998 году, после знаменитого «Дефолта», когда простому обывателю погреться в холодное время года стало роскошью. То есть теплосети работали, но толку от них было мало, а цена на электроэнергию стремительно росла, опережая зарплату. Вот тогда и появился спрос на всякие там «отмотки». Тогда самым ходовым был трансформаторный способ отмотать счетчик, но он требовал вмешательства в схему учета (надо было поменять фазу и ноль на входе счетчика или взять фазный провод до учета). Раньше было проще — тупо вскрыл, поменял концы, и мотай себе назад. Придет инспектор — лицо кирпичом: типа не я, не знаю и т. д. Да и не каждый инспектор туда лазил. Времена менялись, энергонадзор стал придирчивее, теперь за сорванную пломбу — штраф. А если в доме найдет безучетную розетку, благо уйму приборов изобретено для поиска таковых, мало не покажется.

В начале 2000-х в интернете появилась первая схема для электронной отмотки счетчика. Тогда за схему просили от 50 до 150 долларов США. Подумали всей лабораторией, скинулись да кутили. Я даже счет на Вэбманях открыл. В комплекте оказалось аж три схемы — одна для отмотки, две — способ «обогрев». Долго изучали схемы, высказывали свои мысли, и...

Принцип работы основывался на том, что в первую и четвертую четверть периода сетевого напряжения заряжался накопительный конденсатор током повышенной частоты, а во вторую и четвертую — тупо разряжался назад, в сеть. Автор утверждал, что высокочастотная нагрузка, дескать, не заметна счетчику. В качестве накопительного там использовался полярный электролитический конденсатор. В общем, при первом включении этот самый конденсатор вспучило, если бы не реакция одного человека, кто-то мог остаться без гюз. Опять скинулись, купили батарею неполярных. Включили. Заработало. То есть не совсем. Осциллограммы совпадали с исходными, правда ток оно потребляло, и не маленький, при общей емкости 200 мкФ, амперметр показывал почти 10 ампер. Транзисторы (КТ848А) кипели. Ну ладно. Первым, кто забрал прибор на домашние испытания, был наш зав. кафедрой. На следующий день он торжественно объявил — НИ ХРЕНА оно не отматывает! Правда, и счетчик не особо нагружает, а провода греет. После того, как каждый из нас перетаскал это чудо дамой, в очередной раз скинулись, купили еще и счетчик. Испытали другие схемы —результат тот же. Играли с частотой, скважностью, фазой заряд-разряд, короче со всеми параметрами, которые можно подкорректировать. Результата не было, точнее был — пополнялись горы спаленных радиоэлементов. Дело забросили.

Вспомнили с появлением других схем в интернете и появлением в нашем коллективе новых молодых бойцов. Скачивали все подряд, но в архивах было либо то же самое, либо «усовершенствованное, улучшенное», а принцип оставался тот же — горы, правда уже более современных элементов, росли.

Попадались даже платные архивы и добровольцы, которые отправляли CMC, a потом кусали себя за локти.

Теперь ближе к делу. В схемах с накопительным конденсатором, сом конденсатор является нагрузкой, потому что он заряжается на возрастающей четверти периода, для того, чтоб повернуть диск счетчика назад, его надо зарядить как минимум до напряжения выше сетевого. А если применить дроссели для той же цели? Мысль интересная, и возникла у одного из наших новых электрофакеров. Правда, технически реализовать разряд дросселя в счетчик оказалось сложнее, чем конденсатора. Индуктивность после прекращения тока, может отдать при определенных условиях, энергии даже больше накопленной, но в обратной полярности.

Первая работоспособная схема появилась на свет в ноябре 2009 г. В схеме дроссель работал на частоте 100 Гц. То есть, как и в конденсаторном варианте первая четверть периода — накопление энергии, затем вторая четверть через ключи разрядка в сеть. Правда, экономила она 70-75 процентов мощности нагрузки. Третья и четвертая — по аналогии, только на другой полуволне. Все бы ничего, да габариты устройства для киловаттной нагрузки были очень уж громоздкими. Дроссель мотали на железе от киловаттного трансформатора от сварочного аппарата. Конструкция в народе не пользовалась спросом, поэтому разработки велись в сторону уменьшения габаритов и себестоимости.

Вторым этапом стало перемещение рабочей частоты в сторону единиц килогерц, с модуляцией удвоенной сетевой частотой. Кстати, осциллограммы на сайте, соответствуют именно этой схеме. Дроссель мотали уже на пермаллоевых сердечниках. Принцип остался тот.же, за исключением того, что энергия передавалась в дроссель-обратно несколько сотен раз за период. Схема завоевала популярность среди изготовителей. Но пермаллой - довольно эксклюзивный раритетный материал, и его запасы в наших недрах оказались черезчур ископаемыми. Да и повышенная чувствительность к соотношению мощность-индуктивность дросселя деюла ее узконаправленной. Хотя.... Встраивал ее народ в электрокотлы, электроплиты.... Это март 2010 года.

Дальше стал вопрос: либо снижать габариты, либо удешевлять производство. В сентябре 2010 родилась еще одна идея. А зачем вообще синхронизировать это все с сетью? Разработки пошли в двух направлениях: увеличение частоты или использование доступных материалов. Схемы обоих устройств одинаковые, различия только в рабочей частоте, моточных данных и номиналами некоторых элементов. Именно эти два варианта и легли в основу данного документа. А в ноябре 2010 года, один из наших покупателей предложил еще и защиту от перегрузок по току и превышения выходного напряжения.

Список файлов архива:

ec2.pdf - собственно схема;
readme.pdf - описание и все по сборке и настройке;
calc103 - программа для расчета дросселя на феррите;
parametry diodov i tranzistorov.zip - здесь можете подобрать себе транзисторы и диоды;
RadioAmCalc 1.17.zip - программа для расчета дросселя на железе;
read_me.txt - этот файл.

Электроэнергия давно уже стала неотъемлемой частью комфортной жизни. Без неё не будет работать ни один комнатный прибор, что приведёт к огромному количеству проблем. С каждым годом появляются всё более мощные устройства, которые требуют больших затрат постоянно дорожающей электроэнергии. Люди получают огромные счета, которые очень трудно оплатить. Поэтому набирает популярность изготовление своими руками приборов для экономии электроэнергии.

Простые способы экономии электроэнергии

В связи постоянным повышением тарифов на электроэнергию остро встал вопрос о ее экономии. В интернете можно найти десятки приборов, который позволяют снизить расход без каких-либо ограничений. Однако зачастую все они являются незаконными и неэффективными.

Снизить количество потребляемой энергии можно и без специальных приборов. Для этого важно знать несколько простых и доступных способов. Среди них стоит выделить такие:

Приборы для уменьшения расходов электричества

С развитием технологий стали появляться устройства для экономии электроэнергии. Все они работают по одному принципу, но в большинстве случаев практически не снижают расходов потребителей. Однако есть некоторые приборы, которые помогают сэкономить гораздо больше электричества.

Изготовление по заводскому принципу

Очень часто можно встретить рекламу прибора для экономии электричества. Производители уверяют потенциальных покупателей, что расход электроэнергии снизится не менее чем в два раза. Проверить, правда это или нет, можно только на своем опыте, купив прибор или изготовив его своими руками.

  • экономить реактивную мощность в электросети;
  • защищать сеть от ударов молний и перепадов напряжения;
  • фильтровать помехи.

Чтобы сделать его самостоятельно, нужно правильно подобрать соответствующие детали и уметь работать с электроприборами. Стоимость всех составляющих будет значительно ниже цены, которую просят производители.

Схема прибора максимально простая, и в ней может разобраться даже человек, который ни разу не посещал занятий по физике. В неё входят:

  • диодный мостик;
  • закреплённая электронная плата;
  • блок питания (для светодиодов);
  • плёночный конденсатор.

Все эти детали довольно простые и рассчитаны только на малую мощность. Поэтому прибор может быть эффективен только при использовании мелких устройств (зарядка мобильного телефона, светильник и прочие).

Изготавливается прибор следующим образом:

Такой прибор поможет сэкономить только малую часть от потребляемой энергии. При этом он может нанести гораздо больше вреда хозяевам или их квартире. К отрицательным сторонам устройства можно отнести:

Самодельная схема

Чтобы обезопасить себя от некачественных товаров, можно придумать свою схему энергосберегающего прибора. Она будет не только более эффективной, но и дешёвой.

Чтобы выполнить такую работу и добиться нужного результата, необходимо иметь навыки работы с электросхемами и различными приборами.

Для работы понадобятся:

Очень важно заранее подготовить все необходимые предметы. Это нужно для того, чтобы во время работы не отвлекаться по мелочам и не искать тот или иной предмет.

Процесс изготовления состоит из следующих этапов:

  1. Берётся микросхема и кладётся на рабочую поверхность.
  2. К ней поочерёдно припаиваются все комплектующие.
  3. Собранная заготовка аккуратно крепится к нижней части пластикового корпуса.
  4. Затем верхняя часть присоединяется к нижней и фиксируется шурупами.

Усложнённый вариант

Для большей экономии электроэнергии нужно собирать устройство по усложнённой схеме. Такой прибор получается гораздо более эффективным и позволяет сэкономить значительную часть потребляемого электричества.

Перед началом изготовления необходимо купить:

Если не удалось найти какую-либо деталь из списка, то её можно заменить приближённым аналогом. От этого процесс сборки прибора и его эффективность не изменятся.

Устройство изготавливается по предварительно разработанной схеме. Отдельные детали поочерёдно крепятся на микросхему и образуют основу. Во время работы важно учесть некоторые нюансы:

Изготовление приборов для экономии электроэнергии - это довольно трудное занятие, которое требует особой аккуратности, внимательности и наличия опыта подобной работы. Если всё правильно сделать, то можно не только ускорить весь процесс, но и значительно упростить его. При этом важно помнить, что электричество является важной частью современной жизни, и его экономия позволяет сократить расходы.