Описание измерительной программы rlc meter. Описание работы транзисторного LC метра

Сделал как то себе этот крайне полезный и не заменимый прибор, из-за острой необходимости в измерении емкости и индуктивности. Обладает на удивление очень хорошей точностью измерения при этом схема довольно простая базовым компонентом которой является микроконтроллер PIC16F628A.

Схема:

Как видно, основные компоненты схемы это PIC16F628A, знакосинтезирующий дисплей (можно использовать 3 типа дисплея 16х01 16х02 08х02), линейный стабилизатор LM7805, кварцевый резонатор на 4 Мгц, реле на 5В в DIP корпусе, двух секционный переключатель (для переключения режимов измерения L или C).

Прошивки для микроконтроллера:

Печатная плата:

Файл печатной платы в формате sprint layout:

Исходная плата разведена под реле в DIP корпусе.

У меня такого не нашлось и я использовал что было, старое компактное как раз подходящее по размерам реле. В качестве танталовых конденсаторов использовал совковые танталовые. Переключатель режима измерения, выключатель питания и кнопку калибровки использовал, снятые когда то со старых совковых осциллографов.

Провода измерительные:

Должны быть как можно короче.

Во время сборки и настройки руководствовался вот этой инструкцией:

Соберите плату, установите 7 перемычек. Установите в первую очередь перемычки под PIC и под реле и две перемычки рядом с контактами для дисплея.

Используйте танталовые конденсаторы (в генераторе) — 2 шт.
10мкф.
Два конденсатора 1000пФ должны быть полиэстеровые или лучше (прим. допуск не более 1%).

Рекомендуется использовать дисплей с подсветкой (прим. ограничительный резистор 50-100Ом на схеме не указан контакты 15, 16).
Установите плату в корпус. Соединение между плату и дисплей по вашему желанию можно припаять, или сделать используя разъем. Провода вокруг переключателя L/C сделайте как можно короткими и жесткими (прим. для уменьшения «наводок» и для правильной компенсации измерений особенно для заземленного конца L).

Кварц следует использовать 4.000MHz, нельзя использовать 4.1, 4.3 и т.п.

Проверка и калибровка:

  1. Проверьте установку деталей на плате.
  2. Проверьте установку всех перемычек на плате.
  3. Проверьте правильность установки PIC, диодов и 7805.
  4. Не забудьте – «прошить» PIC до установки в LC — метр.
  5. Осторожно включите питание. Если есть возможность, используйте регулируемый источник питания в первый раз. Измерять ток при увеличении напряжения. Ток должен быть не более 20мА. Образец потреблял ток 8мА. Если ничего не видно на дисплее покрутите переменный резистор регулировки контраста. На дисплее должно быть написано «Calibrating », затем C=0.0pF (или С= +/- 10пФ).
  6. Подождите несколько минут («warm-up»), затем нажмите кнопку «zero» (Reset) для повторной калибровки. На дисплее должно быть написано C=0.0pF.
  7. Подключите «калибровочный» конденсатор. На дисплее LC – метра увидите показания (с +/- 10% ошибкой).
  8. Для увеличения показаний емкости замкните перемычку «4» см. картинку ниже (прим. 7 ножка PIC). Для уменьшения показаний емкости, замкните перемычку «3» (прим. 6 ножка PIC) см. картинку ниже. Когда значение емкости будет совпадать с «калибровочным» удалите перемычку. PIC запомнит калибровку. Вы можете повторять калибровку множество раз (до 10,000,000).
  9. Если есть проблемы с измерениями, вы можете с помощью перемычек «1» и «2» проверить частоту генератора. Подсоедините перемычку «2» (прим. 8 ножка PIC) проверьте частоту «F1» генератора. Должно быть 00050000 +/- 10%. Если показания будут слишком большие (near 00065535), прибор выходит в режим «переполнение» и показывает ошибку «overflow» . Если показание слишком низкие (ниже 00040000), вы потеряете точность измерения. Подсоедините перемычку «1» (прим. 9 ножка PIC) для проверки калибровки частоты «F2». Должно быть около 71% +/- 5% от «F1» которые вы получили подсоединяя перемычку «2».
  10. Для получения максимально точных показаний можно регулировать L до получения F1 около 00060000. Предпочтительней устанавливать «L» = 82 мкГн на схеме 100мкГн (вы можете не купить 82мкГн;)).
  11. Если на дисплее 00000000 для F1 или F2, проверьте монтаж около переключателя L/C — это означает, что генератор не работает.
  12. Функция калибровки индуктивности автоматически калибруется, когда происходит калибровка емкости. (прим. калибровка происходят в момент срабатывания реле когда замыкаются L иC в приборе).

Тестовые перемычки

  1. Проверка F2
  2. Проверка F1
  3. Уменьшение C
  4. Увеличение C

Как проводить измерения:

Режим измерения емкости:

  1. Переводим переключатель выбора режима измерения в положение «C»
  2. Нажимаем кнопку «Zero»
  3. Появляется надпись «Setting! .tunngu.» ждем пока не появится «C = 0.00pF»

Режим измерения индуктивности:

  1. Включаем прибор, ждем пока загрузится
  2. Переводим переключатель выбора режима измерения в положение «L»
  3. Замыкаем измерительные провода
  4. Нажимаем кнопку «Zero»
  5. Появляется надпись «Setting! .tunngu.» ждем пока не появится «L = 0.00uH»

Ну вроде все, вопросы и замечания оставляйте в комментариях под статьей.

Программа для измерения сопротивления, индуктивности и емкости неизвестных электронных компонентов.
Требует изготовления простейшего переходника для подключения к звуковой карте компьютера (два штеккера, резистор, провода и щупы).

Download the single-frequency version - Скачать программу v1.11 (архив 175 кБ, одна рабочая частота).
Download the double-frequency version - Скачать программу v2.16 (архив 174 кБ, две рабочих частоты).

Это еще один вариант, пополняющий и без того обширную коллекцию аналогичных программ. Здесь не воплощены все задумки, работа над которыми продолжается. Функционирование «основы» вы можете оценить прямо сейчас.

В основу заложен общеизвестный принцип определения амплитудных и фазовых соотношений между сигналами с известного (образцовогоо) компонента, и с компонента, параметры которого надо определить. В качестве тестового используется сигнал синусоидальной формы, генерируемый звуковой картой. В первой версии программы использовалась только одна фиксированная частота 11025 Гц, в следующей версии к ней добавилась вторая (в 10 раз меньшая). Это позволило расширить верхние границы измерений для емкостей и индуктивностей.

Выбор именно этой частоты (четверть от частоты сэмлинга) является главной «инновацией», отличающей этот проект от остальных. На такой частоте алгоритм интегрирования по-Фурье (не путать с БПФ - быстрым преобразованием Фурье) максимально упрощается, а нежелательные побочные эффекты, приводящие к росту шума в измеряемом параметре, полностью пропадают. В итоге кардинально улучшается быстродействие и снижается разброс показаний (особо ярко выраженный на краях диапазонов). Это позволяет расширить диапазоны измерений и обойтись только одним образцовым элементом (резистором).

Собрав схему согласно рисунку и установив регуляторы уровня Windows в оптимальное положение, а также произведя начальную калибровку по закороченным между собой щупам («Cal.0»), можно сразу же приступать к измерениям. С такой калибровкой без труда ловятся низкие сопротивления, в том числе ESR, порядка 0,001 ом, а СКО (среднеквадратическое отклонение) результатов измерений в этом случае составляет порядка 0,0003 ом. Если зафиксировать положение проводов (чтобы не менялась их индуктивность), то можно «ловить» индуктивности порядка 5 нГн. Калибровку «Cal.0» желательно проводить после каждого старта программы, поскольку положение регуляторов уровня в среде Windows может быть, в общем случае, непредсказуемым.

Чтобы расширить диапазон измерений в область больших R, L и малых C, требуется учитывать входное сопротивление звуковой карты. Для этого служит кнопка «Cal.^», нажимать на которую надо при разомкнутых между собой щупах. После такой калибровки можно достичь следующих диапазонов измерений (при нормировании случайной составляющей погрешности на краях диапазонов на уровне 10%):

  • по R - 0.01 ом... 3 Мом,
  • по L - 100 нГн... 100 Гн,
  • по C - 10 пФ... 10 000 мкФ (для версии с двумя рабочими частотами)

Минимальная погрешность измерения определяется допуском образцового резистора. Если предполагается использование обычного ширпотребовского резистора (и даже с номиналом, отличным от указанного), в программе предусмотрена возможность его калибровки. Соответствующая кнопка «Cal.R» становится активной при переходе в режим «Ref.» Величина резистора, который будет использоваться в качестве эталонного, задается в файле *.ini в качестве значения параметра «CE_real». После калибровки уточненные характеристики образцового резистора запишутся в виде новых значений параметров «CR_real» и «CR_imag» (в 2-х частотной версии параметры измеряются на двух частотах).

С регуляторами уровня программа напрямую не работает - пользуйтесь стандартным микшером Windows или аналогичным. Шкала «Level» служит для настройки оптимального положения регуляторов. Здесь можно порекомендовать такую методику настройки:

1. Определиться, какой регулятор отвечают за уровень воспроизведения, а какой - за уровень записи. Остальные регуляторы желательно заглушить для минимизации вносимых ими шумов. Регуляторы балланса - в среднее положение.
2. Исключить прегрузку по выходу. Для этого, установив регулятор записи в положение ниже среднего, с помощью регулятора воспроизведения найти ту точку, где ограничивается рост столбика «Level», а затем немного отступить назад. Скорее всего перегрузки вообще не будет, но для надежности регулятор лучше не выводить на отметку «макс».
3. Исключить прегрузку по входу - регулятором уровня записи сделать так, чтобы столбик «Level» не доходил до конца шкалы (оптимальное положение - 70...90%) в отсутствии измеряемого компонента, т.е. при разомкнутых щупах.
4. Замыкание щупов между собой не должно приводить к сильной просадке уровня. Если это так, то выходные усилители звуковой карты слишком слабы для данной задачи (иногда решается настройками карты).

Требования к системе

  • ОС семейства Windows (тестировалась под Windows XP),
  • поддержка звука 44,1 ksps, 16 bit, stereo,
  • наличие одного аудио устройства в системе (если окажется несколько, то программа будет работать с первым из них, и не факт, что у веб-камеры окажутся гнезда «Line In» и «Line Out»).

Особенности измерений, или чтобы не попасть впростак

Любой измерительный инструмент требует знания его возможностей и умения правильно интерпретировать результат. Например, при использовании мультиметра стоит задуматься, а какое переменное напряжение он, собственно, меряет (при отличии формы от синусоидальной)?

В 2-х частотной версии для измерения больших емкостей и индуктивностей используется низкая (1,1 кГц) частота. Граница перехода отмечена сменой цвета шкалы с зеленого на желтый. Аналогично меняется и цвет показаний - с зеленого на желтый при переходе к измерениям на низкой частоте.

Стереофонический вход звуковой карты позволяет организовать «четырехпроводную» схему подключения только для измеряемого компонента, схема же подключения эталонного резистора остается «двухпроводной». При таком раскладе любая нестабильность контакта разъема (в нашем случае - земляного) может исказить результат измерения. Ситуацию спасает относительно большая величина сопротивления эталонного резистора по сравнению к нестабильностью сопротивления контакта - 100 ом против долей ома.

И последнее. Если измеряемый компонет - конденсатор, то он может оказаться заряженным! Даже разряженный электролитический конденсатор со временем может «собрать» оставшийся заряд. Схема не имеет защиты, так что вы рискуете вывести из строя свою звуковую карту, а в худшем случае - сам компьютер. Сказанное относится и к тестированию компонетов в устройстве, тем более - необесточенном.

Этот точный LC метр построен на базе недорогих компонентов, которые очень легко найти в радиомагазинах. Диапазон измерителя LC-метра достаточно широк и подходит для измерения даже очень низких значения емкости и индуктивности.

Печатная плата - рисунок

Индуктивности - диапазоны измерений:

  • 10nH - 1000nH
  • 1uH - 1000uH
  • 1mH - 100mH

Диапазоны измерения емкости:

  • 0.1pF - 1000pF
  • 1nF - 900nF

Большим плюсом устройства является автоматическая калибровка при включении питания, поэтому исключена ошибка в калибровке, что присуще некоторым аналогичным , особенно аналоговых. При необходимости, можно выполнить повторную калибровку в любой момент, нажатием кнопки reset. В обем данный LC метр полностью автоматический. Прошивку МК PIC16F628 .

Компоненты прибора

Слишком точные компоненты являются необязательными, за исключением одного (или более) конденсаторов, которые используются для калибровки измерителя. Два 1000 пФ конденсатора по входу должны быть достаточно хорошего качества. Пенополистирол является более предпочтительным. Избегайте керамических конденсаторы, ведь некоторые из них могут иметь большие потери.

Два конденсатора по 10 мкФ в генераторе должен быть танталовые (у них низкое последовательное сопротивление и индуктивность). Кварцевый резонатор на 4 МГц должен быть строго 4.000 МГц, а не что-то приближенное к этому значению. Каждый 1% ошибки в частоте кварца добавляет 2% ошибок при измерении значения индуктивности. Реле должно обеспечить около 30 мА тока срабатывания. Резистором R5 выставляется контраст ЖК дисплея LC метра. Питается прибор от обычной батарейки Крона, так как дальше напряжение стабилизируется микросхемой 7805 .

Я уверен, что этот проект не является новым, но это собственная разработка и хочу, чтобы этот проект так, же был известен и полезен.

Схема LC метра на ATmega8 достаточно проста. Осциллятор является классическим и выполнен на операционном усилителе LM311. Основная цель, которую я преследовал при создании данного LC метра — сделать его не дорогим и доступным для сборки каждым радиолюбителем.

Принципиальная схема измерителя емкости и индукции

Характеристики LC-метра:

  • Измерение емкости конденсаторов: 1пФ — 0,3мкФ.
  • Измерение индуктивности катушек: 1мкГн-0,5мГн.
  • Вывод информации на ЖК индикатор 1×6 или 2×16 символов в зависимости от выбранного программного обеспечения

Для данного прибора я разработал программное обеспечение, позволяющее использовать тот индикатор, который есть в распоряжении у радиолюбителя либо 1х16 символьный ЖК-дисплей, либо 2х 16 символов.

Тесты с обоих дисплеев, дали отличные результаты. При использовании дисплея 2х16 символов в верхней строке отображается режим измерения (Cap – емкость, Ind – ) и частота генератора, в нижней же строке результат измерения. На дисплее 1х16 символов слева отображается результат измерения, а справа частота работы генератора.

Однако, чтобы поместить на одну строку символов измеренное значение и частоту, я сократил разрешение дисплея. Это ни как не сказывается на точность измерения, только чисто визуально.

Как и в других известных вариантах, которые основаны на той же универсальной схеме, я добавил в LC-метр кнопку калибровки. Калибровка проводится при помощи эталонного конденсатора емкостью 1000пФ с отклонением 1%.

При нажатии кнопки калибровки отображается следующее:

Измерения, проведенные с помощью данного прибора на удивление точны, и точность во многом зависит от точности стандартного конденсатора, который вставляется в цепь, когда вы нажимаете кнопку калибровки. Метод калибровки устройства заключается всего лишь в измерении емкости эталонного конденсатора и автоматической записи его значения в память микроконтроллера.

Если вы не знаете точное значение, можете откалибровать прибор, изменяя значения измерений шаг за шагом до получения наиболее точного значения конденсатора. Для подобной калибровки имеются две кнопки, обратите внимание, на схеме они обозначены как «UP» и «DOWN». Нажимая их можно добиться корректировки емкости калибровочного конденсатора. Затем данное значение автоматически записывается в память.

Перед каждым замером емкости необходимо сбросить предыдущие показания. Сброс на ноль происходит при нажатии «CAL».

Для сброса в режиме индуктивности, необходимо сначала замкнуть выводы входа, а затем нажать «CAL».

Весь монтаж разработан с учетом свободной доступности радиодеталей и с целью достижения компактности устройства. Размер платы не превышают размеров ЖК-дисплея. Я использовал как дискретные компоненты, так и компоненты поверхностного монтажа. Реле с рабочим напряжением 5В. Кварцевый резонатор — 8MHz.

Представляем оригинальную конструкцию lc-метра от нашего коллеги R2-D2. Далее слово автору схемы: В радиолюбительском деле, особенно при ремонтах, необходимо иметь под рукой прибор для измерения емкости и индуктивности - так называемый lc метр. На сегодняшний день для повторения в интернете можно найти много схем подобных устройств, сложных и не очень. Но решил создать свой вариант устройства. Практически все схемы LC метров с использованием микроконтроллеров представленные в интернете, выглядят одинаково. Идея заключается в расчете номинала неизвестных компонентов по формуле зависимости частоты от емкости и индуктивности. Для простоты своей конструкции решил использовать внутренний компаратор микроконтроллера в качестве генератора. Для отображения информации используется LCD от телефона Nokia 3310 либо ему подобный с контроллером PCD8544 и разрешением 84х48, например Nokia 5110 .

Схема lc метра на микроконтроллере

Настройка и функции


Сердцем устройства является микроконтроллер PIC18F2520 . Для стабильной работы генератора в качестве С3 и С4 лучше использовать неполярные конденсаторы либо танталовые. Реле можно использовать любое, соответствующее по напряжению (3-5 вольт), но желательно с минимально возможным сопротивлением контактов в замкнутом положении. Для звука используется буззер без встроенного генератора, или обычный пьезоэлемент.

При первом старте собранного устройства, программа автоматически запускает режим настройки контраста дисплея. Кнопками 2/4 необходимо установить приемлемый контраст и нажать кнопку OK (3). После выполнения данных действий устройство следует выключить и включить заново. Для некоторой настройки работы измерителя в меню есть раздел «Setup ». В подменю «Capacitor », необходимо указать точный номинал используемого калибровочного конденсатора (С_cal) в пФ. Точность указанного номинала напрямую влияет на точность измерения. Контролировать работу самого генератора можно с помощью частотомера в контрольной точке «B», однако лучше использовать уже встроенную систему контроля частоты в подменю «Oscillator ».

С помощью подбора L1 и С1, необходимо добиться стабильных показаний частоты в районе 500-800 кГц. Большая частота положительно влияет на точность измерения в тоже время с ростом частоты может ухудшаться стабильность генератора. Частоту и стабильность генератора, как я уже сказал выше, удобно мониторить в разделе меню «Oscillator ». При наличии внешнего калиброванного частотомера можно выполнить калибровку частотомера LC-метра. Для этого необходимо подключить внешний частотомер к контрольной точке «B» и с помощью кнопок +/- в меню «Oscillator » подобрать константу «K» таким образом, чтобы показания обоих частотомеров совпадали. Для корректной работы системы отображения состояния батареи питания, необходимо настроить резистивный делитель, построенный на резисторах R9, R10, после чего установить перемычку S1 и записать значения в поля раздела «Battery».

Порядок настройки

  • - Измерить напряжение питания микроконтроллера (выводы 19 - 20). Это опорное напряжение “V.ref”
  • - Измерить напряжение до резистивного делителя = U1
  • - Измерить напряжение питания после делителя = U2
  • - Рассчитать коэф. деления “С.div” = U1/U2
  • - Внести полученные цифры в соответствующие разделы меню сохраняя их нажатием кнопки «ОК».

Также внести напряжения “V.max” - максимальное напряжение батареи питания (заполнены все сегменты отображаемой батарейки) и соответственно “V.min” - минимальное напряжение батареи питания (все сегменты батарейки погашены, прибор сигнализирует о необходимой смене или заряде батареи питания). Значения напряжения питания для отображения промежуточных сегментов на пиктограмме батарейки, будут рассчитаны автоматически после внесения информации о “V.max” и “V.min”.

Использование стабилизатора для питания схемы обязательно, так как опорное напряжение должно быть стабильным и не меняться при разряде батареи.

Работа с устройством

Ещё меню lc-метра содержит разделы Light , Sound , Memory . В разделе Light есть возможность включить либо отключить подсветку LCD. Раздел Sound , для вкл/откл звука. В разделе Memory можно посмотреть результаты последних 10 измерений, а также (для новичков) увидеть полученный результат в разных единицах измерения. Назначение кнопок описывают пиктограммы, размещенные в нижней части экрана.

  • (F ) - “Function” переход в меню Setup
  • (M ) - “Memory” сохранение результатов измерения в памяти
  • () - “Light” вкл/откл подсветки
  • (C ) - “Calibration” калибровка

Главный экран содержит условную шкалу погрешности в измерениях, которую необходимо контролировать и в случае необходимости своевременно выполнять калибровку.

Измерение емкости

1. Переключить устройство в режим измерения емкости. Выполнить калибровку. Убедиться, что погрешность измерения находится в допустимых пределах. В случае больших отклонений повторить калибровку.

2. Подключить измеряемый конденсатор к клеммам. На экране появится результат измерений. Для сохранения результата в памяти необходимо нажать (M).

Измерение индуктивности

1. Переключить устройство в режим измерения индуктивности. Замкнуть клеммы. Выполнить калибровку. Убедиться, что погрешность измерения находится в допустимых пределах. В случае больших отклонений повторить калибровку.

2. Подключить измеряемую индуктивность к клеммам. На экране появится результат измерений. Для сохранения результата в памяти необходимо нажать (M).

Видео работы измерителя

В качестве корпуса задействовал геройски погибший при ремонте телевизора китайский тестер.

Все файлы - прошивки контроллера, платы в Lay и так далее можно или на форуме. Материал предоставил - Савва . Автор схемы R2-D2 .

Обсудить статью LC МЕТР