Ультразвуковой контроль стыковых кольцевых сварных соединений трубных систем и трубопроводов. Дефектоскопия трубопроводов – ультразвуковой способ контроля труб, сварных швов и соединений Откуда колебания волны

ГОСТ 17410-78

Группа В69

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

КОНТРОЛЬ НЕРАЗРУШАЮЩИЙ

ТРУБЫ МЕТАЛЛИЧЕСКИЕ БЕСШОВНЫЕ ЦИЛИНДРИЧЕСКИЕ

Методы ультразвуковой дефектоскопии

Non-destructive testing. Metal seamless cylindrical pipes and tubes. Ultrasonic methods of defekt detection


МКС 19.100
23.040.10

Дата введения 1980-01-01

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством тяжелого, энергетического и транспортного машиностроения СССР

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 06.06.78 N 1532

3. ВЗАМЕН ГОСТ 17410-72

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Номер пункта, подпункта

5. Ограничение срока действия снято по протоколу N 4-93 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 4-94)

6. ИЗДАНИЕ (сентябрь 2010 г.) с Изменениями N 1, , утвержденными в июне 1984 г., июле 1988 г. (ИУС 9-84, 10-88)


Настоящий стандарт распространяется на прямые металлические однослойные бесшовные цилиндрические трубы, изготовленные из черных и цветных металлов и сплавов, и устанавливает методы ультразвуковой дефектоскопии сплошности металла труб для выявления различных дефектов (типа нарушения сплошности и однородности металла), расположенных на наружной и внутренней поверхностях, а также в толще стенок труб и обнаруживаемых ультразвуковой дефектоскопической аппаратурой.

Действительные размеры дефектов, их форма и характер настоящим стандартом не устанавливаются.

Необходимость проведения ультразвукового контроля, объем его и нормы недопустимых дефектов должны определяться в стандартах или технических условиях на трубы.

1. АППАРАТУРА И СТАНДАРТНЫЕ ОБРАЗЦЫ

1.1. При контроле используют: ультразвуковой дефектоскоп; преобразователи; стандартные образцы, вспомогательные устройства и приспособления для обеспечения постоянных параметров контроля (угла ввода, акустического контакта, шага сканирования).

Форма паспорта стандартного образца приведена в приложении 1а.


1.2. Допускается применять аппаратуру без вспомогательных приспособлений и устройств для обеспечения постоянных параметров контроля при перемещении преобразователя вручную.

1.3. (Исключен, Изм. N 2).

1.4. Выявленные дефекты металла труб характеризуются эквивалентной отражающей способностью и условными размерами.

1.5. Номенклатура параметров преобразователей и методы их измерений - по ГОСТ 23702 .


1.6. При контактном способе контроля рабочую поверхность преобразователя притирают по поверхности трубы при наружном диаметре ее меньше 300 мм.

Вместо притирки преобразователей допускается использование насадок и опор при контроле труб всех диаметров преобразователями с плоской рабочей поверхностью.

1.7. Стандартным образцом для настройки чувствительности ультразвуковой аппаратуры при проведении контроля служит отрезок бездефектной трубы, выполненный из того же материала, того же типоразмера и имеющий то же качество поверхности, что и контролируемая труба, в котором выполнены искусственные отражатели.

Примечания:

1. Для труб одного сортамента, отличающихся по качеству поверхности и составу материалов, допускается изготовление единых стандартных образцов, если при одинаковой настройке аппаратуры амплитуды сигналов от одинаковых по геометрии отражателей и уровень акустических шумов совпадают с точностью не менее ±1,5 дБ.

2. Допускается предельное отклонение размеров (диаметр, толщина) стандартных образцов от размеров контролируемой трубы, если при неизменной настройке аппаратуры амплитуды сигналов от искусственных отражателей в стандартных образцах отличаются от амплитуды сигналов от искусственных отражателей в стандартных образцах того же типоразмера, что и контролируемая труба, не более чем на ±1,5 дБ.

3. Если металл труб неоднороден по затуханию, то допускается разделение труб на группы, для каждой из которых должен быть изготовлен стандартный образец из металла с максимальным затуханием. Методика определения затухания должна быть указана в технической документации на контроль.

1.7.1. Искусственные отражатели в стандартных образцах для настройки чувствительности ультразвуковой аппаратуры на контроль продольных дефектов должны соответствовать черт.1-6, на контроль поперечных дефектов - черт.7-12, на контроль дефектов типа расслоений - черт.13-14.

Примечание. Допускается использовать другие типы искусственных отражателей, предусмотренные в технической документации на контроль.

1.7.2. Искусственные отражатели типа риски (см. черт.1, 2, 7, 8) и прямоугольного паза (см. черт.13) используются преимущественно при автоматизированном и механизированном контроле. Искусственные отражатели типа сегментного отражателя (см. черт.3, 4, 9, 10), зарубки (см. черт.5, 6, 11, 12), плоскодонного отверстия (см. черт.14) используются преимущественно при ручном контроле. Вид искусственного отражателя, его размеры зависят от способа контроля и от типа применяемой аппаратуры и должны предусматриваться в технической документации на контроль.

Черт.1

Черт.3

Черт.8

Черт.11

1.7.3. Риски прямоугольной формы (черт.1, 2, 7, 8, исполнения 1) применяются для контроля труб с номинальной толщиной стенки, равной или большей 2 мм.

Риски треугольной формы (черт.1, 2, 7, 8, исполнения 2) применяются для контроля труб с номинальной толщиной стенки любой величины.

(Измененная редакция, Изм. N 1).

1.7.4. Угловые отражатели типа сегмента (см. черт.3, 4, 9, 10) и зарубки (см. черт.5, 6, 11, 12) используются при ручном контроле труб наружным диаметром свыше 50 мм и толщиной более 5 мм.

1.7.5. Искусственные отражатели в стандартных образцах типа прямоугольного паза (см. черт.13) и плоскодонных отверстий (см. черт.14) используются для настройки чувствительности ультразвуковой аппаратуры на выявление дефектов типа расслоений при толщине стенки трубы больше 10 мм.

1.7.6. Допускается изготовление стандартных образцов с несколькими искусственными отражателями при условии, что расположение их в стандартном образце исключает их взаимное влияние друг на друга при настройке чувствительности аппаратуры.

1.7.7. Допускается изготовление составных стандартных образцов, состоящих из нескольких отрезков труб с искусственными отражателями при условии, что границы соединения отрезков (сваркой, свинчиванием, плотной посадкой) не влияют на настройку чувствительности аппаратуры.

1.7.8. В зависимости от назначения, технологии изготовления и качества поверхности контролируемых труб следует использовать один из типоразмеров искусственных отражателей, определяемых рядами:

Для рисок:

Глубина риски , % от толщины стенки трубы: 3, 5, 7, 10, 15 (±10%);

- длина риски , мм: 1,0; 2,0; 3,0; 5,0; 10,0; 25,0; 50,0; 100,0 (±10%);

- ширина риски , мм: не более 1,5.

Примечания:

1. Длина риски дана для ее части, имеющей постоянную глубину в пределах допуска; участки входа и выхода режущего инструмента не учитываются.

2. Допускаются на углах риски закругления, связанные с технологией ее изготовления, не больше 10% .


Для сегментных отражателей:

- высота , мм: 0,45±0,03; 0,75±0,03; 1,0±0,03; 1,45±0,05; 1,75±0,05; 2,30±0,05; 3,15±0,10; 4,0±0,10; 5,70±0,10.

Примечание. Высота сегментного отражателя должна быть больше длины поперечной ультразвуковой волны.


Для зарубок:

- высота и ширина должны быть больше длины поперечной ультразвуковой волны; отношение должно быть более 0,5 и менее 4,0.

Для плоскодонных отверстий:

- диаметр 2, мм: 1,1; 1,6; 2,0; 2,5; 3,0; 3,6; 4,4; 5,1; 6,2.

Расстояние плоского дна отверстия от внутренней поверхности трубы должно составлять 0,25; 0,5; 0,75, где - толщина стенки трубы.

Для прямоугольных пазов:

ширина , мм: 0,5; 1,0; 1,5; 2,0; 2,5; 3,0; 3,5; 4,0; 5,0; 10,0; 15,0 (±10%).

Глубина должна составлять 0,25; 0,5; 0,75, где - толщина стенки трубы.

Примечание. Для плоскодонных отверстий и прямоугольных пазов допускаются другие значения глубины , предусмотренные в технической документации на контроль.


Параметры искусственных отражателей и методики их проверки указывают в технической документации на контроль.

(Измененная редакция, Изм. N 1).

1.7.9. Высота макронеровностей рельефа поверхности стандартного образца должна быть в 3 раза меньше глубины искусственного углового отражателя (риски, сегментного отражателя, зарубки) в стандартном образце, по которому проводится настройка чувствительности ультразвуковой аппаратуры.

1.8. При контроле труб с отношением толщины стенки к наружному диаметру 0,2 и менее искусственные отражатели на наружной и внутренней поверхностях выполняют одинакового размера.

При контроле труб с большим отношением толщины стенки к наружному диаметру размеры искусственного отражателя на внутренней поверхности должны устанавливаться в технической документации на контроль, однако допускается увеличение размеров искусственного отражателя на внутренней поверхности стандартного образца, по сравнению с размерами искусственного отражателя на наружной поверхности стандартного образца, не более чем в 2 раза.

1.9. Стандартные образцы с искусственными отражателями разделяются на контрольные и рабочие. Настройка ультразвуковой аппаратуры проводится по рабочим стандартным образцам. Контрольные образцы предназначены для проверки рабочих стандартных образцов для обеспечения стабильности результатов контроля.

Контрольные стандартные образцы не изготовляют, если рабочие стандартные образцы проверяют измерением параметров искусственных отражателей непосредственно не реже одного раза в 3 мес.

Соответствие рабочего образца контрольному проверяют не реже одного раза в 3 мес.

Рабочие стандартные образцы, которые не применяют в течение указанного периода, проверяют перед их использованием.

При несоответствии амплитуды сигнала от искусственного отражателя и уровня акустических шумов образца контрольному на ±2 дБ и более его заменяют новым.

(Измененная редакция, Изм. N 1).

2. ПОДГОТОВКА К КОНТРОЛЮ

2.1. Перед проведением контроля трубы очищают от пыли, абразивного порошка, грязи, масел, краски, отслаивающейся окалины и других загрязнений поверхности. Острые кромки на торце трубы не должны иметь заусенцев.

Необходимость нумерации труб устанавливают в зависимости от их назначения в стандартах или технических условиях на трубы конкретного типа. По согласованию с заказчиком трубы могут не нумероваться.

(Измененная редакция, Изм. N 2).

2.2. Поверхности труб не должны иметь отслоений, вмятин, забоин, следов вырубки, затеканий, брызг расплавленного металла, коррозионных повреждений и должны соответствовать требованиям к подготовке поверхности, указанным в технической документации на контроль.

2.3. Для механически обработанных труб параметр шероховатости наружной и внутренней поверхностей по ГОСТ 2789 40 мкм.

(Измененная редакция, Изм. N 1).

2.4. Перед контролем проверяют соответствие основных параметров требованиям технической документации на контроль.

Перечень параметров, подлежащих проверке, методика и периодичность их проверки должны предусматриваться в технической документации к применяемым средствам ультразвукового контроля.

2.5. Настройку чувствительности ультразвуковой аппаратуры производят по рабочим стандартным образцам с искусственными отражателями, указанными на черт.1-14 в соответствии с технической документацией на контроль.

Настройка чувствительности автоматической ультразвуковой аппаратуры по рабочим стандартным образцам должна отвечать условиям производственного контроля труб.

2.6. Настройку чувствительности автоматической ультразвуковой аппаратуры по стандартному образцу считают законченной, если не менее чем при пятикратном пропускании образца через установку в установившемся режиме происходит 100%-ная регистрация искусственного отражателя. При этом, если позволяет конструкция трубопротяжного механизма, стандартный образец перед вводом в установку поворачивают каждый раз на 60-80° относительно предшествующего положения.

Примечание. При массе стандартного образца больше 20 кг допускается пятикратное пропускание в прямом и обратном направлениях участка стандартного образца с искусственным дефектом.

3. ПРОВЕДЕНИЕ КОНТРОЛЯ

3.1. При контроле качества сплошности металла труб применяют эхо-метод, теневой или зеркально-теневой методы.

(Измененная редакция, Изм. N 1).

3.2. Ввод ультразвуковых колебаний в металл трубы осуществляется иммерсионным, контактным или щелевым способом.

3.3. Применяемые схемы включения преобразователей при контроле приведены в приложении 1.

Допускается применять другие схемы включения преобразователей, приведенные в технической документации на контроль. Способы включения преобразователей и типы возбуждаемых ультразвуковых колебаний должны обеспечивать надежное выявление искусственных отражателей в стандартных образцах в соответствии с пп.1.7 и 1.9.

3.4. Контроль металла труб на отсутствие дефектов достигается сканированием поверхности контролируемой трубы ультразвуковым пучком.

Параметры сканирования устанавливаются в технической документации на контроль в зависимости от применяемой аппаратуры, схемы контроля и размеров дефектов, подлежащих выявлению.

3.5. Для увеличения производительности и надежности контроля допускается применение многоканальных схем контроля, при этом преобразователи в контрольной плоскости должны располагаться так, чтобы исключить взаимное влияние их на результаты контроля.

Настройку аппаратуры по стандартным образцам проводят для каждого канала контроля отдельно.

3.6. Проверка правильности настройки аппаратуры по стандартным образцам должна проводиться при каждом включении аппаратуры и не реже чем через каждые 4 ч непрерывной работы аппаратуры.

Периодичность проверки определяется типом используемой аппаратуры, применяемой схемой контроля и должна устанавливаться в технической документации на контроль. При обнаружении нарушения настройки между двумя проверками вся партия проконтролированных труб подлежит повторному контролю.

Допускается в течение одной смены (не более 8 ч) проводить периодическую проверку настройки аппаратуры при помощи устройств, параметры которых определяют после настройки аппаратуры по стандартному образцу.

3.7. Метод, основные параметры, схемы включения преобразователей, способ ввода ультразвуковых колебаний, схему прозвучивания, способы разделения ложных сигналов и сигналов от дефектов устанавливают в технической документации на контроль.

Форма карты ультразвукового контроля труб приведена в приложении 2.

3.6; 3.7. (Измененная редакция, Изм. N 1).

3.8. В зависимости от материала, назначения и технологии изготовления трубы проверяют на:

а) продольные дефекты при распространении ультразвуковых колебаний в стенке трубы в одном направлении (настройка по искусственным отражателям, черт.1-6);

б) продольные дефекты при распространении ультразвуковых колебаний в двух направлениях навстречу друг другу (настройка по искусственным отражателям, черт.1-6);

в) продольные дефекты при распространении ультразвуковых колебаний в двух направлениях (настройка по искусственным отражателям, черт.1-6) и поперечные дефекты при распространении ультразвуковых колебаний в одном направлении (настройка по искусственным отражателям черт.7-12);

г) продольные и поперечные дефекты при распространении ультразвуковых колебаний в двух направлениях (настройка по искусственным отражателям черт.1-12);

д) дефекты типа расслоений (настройка по искусственным отражателям (черт.13, 14) в сочетании с подпунктами а, б, в, г .

3.9. При контроле чувствительность аппаратуры настраивают так, чтобы амплитуды эхо-сигналов от внешнего и внутреннего искусственных отражателей отличались не более чем на 3 дБ. Если это различие нельзя компенсировать электронными устройствами или методическими приемами, то контроль труб на внутренние и внешние дефекты проводят по раздельным электронным каналам.

4. ОБРАБОТКА И ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ КОНТРОЛЯ

4.1. Оценку сплошности металла труб проводят по результатам анализа информации, получаемой в результате контроля, в соответствии с требованиями, установленными в стандартах или технических условиях на трубы.

Обработка информации может выполняться либо автоматически с использованием соответствующих устройств, входящих в установку контроля, либо дефектоскопистом по данным визуальных наблюдений и измеряемым характеристикам обнаруживаемых дефектов.

4.2. Основной измеряемой характеристикой дефектов, по которой производят разбраковку труб, является амплитуда эхо-сигнала от дефекта, которую измеряют сравнением с амплитудой эхо-сигнала от искусственного отражателя в стандартном образце.

Дополнительные измеряемые характеристики, используемые при оценке качества сплошности металла труб, в зависимости от применяемой аппаратуры, схемы и метода контроля и искусственных настроечных отражателей, назначения труб указывают в технической документации на контроль.

4.3. Результаты ультразвукового контроля труб вписывают в журнал регистрации или в заключение, где должны быть указаны:

- типоразмер и материал трубы;

- объем контроля;

- техническая документация, по которой выполняется контроль;

- схема контроля;

- искусственный отражатель, по которому настраивалась чувствительность аппаратуры при контроле;

- номера стандартных образцов, применяемых при настройке;

- тип аппаратуры;

- номинальная частота ультразвуковых колебаний;

- тип преобразователя;

- параметры сканирования.

Дополнительные сведения, подлежащие записи, порядок оформления и хранения журнала (или заключения), способы фиксации выявленных дефектов должны устанавливаться в технической документации на контроль.

Форма журнала ультразвукового контроля труб приведена в приложении 3.

(Измененная редакция, Изм. N 1).

4.4. Все отремонтированные трубы должны пройти повторный ультразвуковой контроль в полном объеме, определенном в технической документации на контроль.

4.5. Записи в журнале (или заключении) служат для постоянного контроля за соблюдением всех требований стандарта и технической документации на контроль, а также для статистического анализа эффективности контроля труб и состояния технологического процесса их производства.

5. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

5.1. При проведении работ по ультразвуковому контролю труб дефектоскопист должен руководствоваться действующими "Правилами технической эксплуатации электроустановок потребителей и правилами технической безопасности при эксплуатации электроустановок потребителей "*, утвержденными Госэнергонадзором 12 апреля 1969 года с дополнениями от 16 декабря 1971 года и согласованными с ВЦСПС 9 апреля 1969 года.
________________
* На территории Российской Федерации документ не действует. Действуют Правила технической эксплуатации электроустановок потребителей и Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок (ПОТ Р М-016-2001, РД 153-34.0-03.150-00). - Примечание изготовителя базы данных.

5.2. Дополнительные требования по технике безопасности и противопожарной технике устанавливаются в технической документации на контроль.

При эхо-методе контроля применяют совмещенную (черт.1-3) или раздельную (черт.4-9) схемы включения преобразователей.

При совмещении эхо-метода и зеркально-теневого метода контроля применяют раздельно-совмещенную схему включения преобразователей (черт.10-12).

При теневом методе контроля применяют раздельную (черт.13) схему включения преобразователей.

При зеркально-теневом методе контроля применяют раздельную (черт.14-16) схему включения преобразователей.

Примечание к черт.1-16: Г - вывод к генератору ультразвуковых колебаний; П - вывод к приемнику.

Черт.4

Черт.6

Черт.16

ПРИЛОЖЕНИЕ 1. (Измененная редакция, Изм. N 1)

ПРИЛОЖЕНИЕ 1a (cправочное). Паспорт на стандартный образец

ПРИЛОЖЕНИЕ 1a
Справочное

ПАСПОРТ
на стандартный образец N

Наименование предприятия-изготовителя

Дата изготовления

Назначение стандартного образца (рабочий или контрольный)

Марка материала

Типоразмер трубы (диаметр, толщина стенки)

Тип искусственного отражателя по ГОСТ 17410-78

Вид ориентации отражателя (продольная или поперечная)

Размеры искусственных отражателей и способ измерения:

Тип отражателя

Поверхность нанесения

Способ измерения

Параметры отражателя, мм

Риска (треугольная или прямоугольная)

Сегментный отражатель

Плоскодонное отверстие

расстояние

Прямоугольный паз

Дата периодической проверки

должность

фамилия, и., о.

Примечания:

1. В паспорте указываются размеры искусственных отражателей, которые изготовляются в данном стандартном образце.

2. Паспорт подписывается руководителями службы, проводящей аттестацию стандартных образцов, и службы отдела технического контроля.

3. В графе "Способ измерения" указывается метод измерения: непосредственный, при помощи слепков (пластмассовых оттисков), при помощи образцов-свидетелей (амплитудный метод) и инструмента или прибора, которыми проводились измерения.

4. В графе "Поверхность нанесения" указывается внутренняя или наружная поверхность стандартного образца.


ПРИЛОЖЕНИЕ 1а. (Введено дополнительно, Изм. N 1).

ПРИЛОЖЕНИЕ 2 (рекомендуемое). Карта ультразвукового контроля труб при ручном способе сканирования

Номер технической документации на контроль

Типоразмер труб (диаметр, толщина стенки)

Марка материала

Номер технической документации, регламентирующей нормы оценки годности

Объем контроля (направления прозвучивания)

Тип преобразователя

Частота преобразователя

Угол падения луча

Тип и размер искусственного отражателя (или номер стандартного образца) для настройки чувствительности фиксации

и поисковой чувствительности

Тип дефектоскопа

Параметры сканирования (шаг, скорость контроля)

Примечание. Карта должна составляться инженерно-техническими работниками службы дефектоскопии и согласовываться, при необходимости, с заинтересованными службами предприятия (отделом главного металлурга, отделом главного механика и т.п.).

Дата конт-
роля

Номер пакета, предъявки, серти-
фиката

Коли-
чество труб, шт.

Параметры контроля (номер стандартного образца, размеры искусственных дефектов, тип установки, схема контроля, рабочая частота УЗК, размер преобразователя, шаг контроля)

Номера прове-
ренных труб

Результаты УЗК

Подпись дефекто-
скописта (оператора-
контролера) и ОТК

Раз-
мер, мм

Мате-
риал

номера труб без де-
фектов

номера труб с дефек-
тами


ПРИЛОЖЕНИЕ 3. (Измененная редакция, Изм. N 1).



Электронный текст документа
подготовлен АО "Кодекс" и сверен по:
официальное издание
Трубы металлические и соединительные
части к ним. Часть 4. Трубы из черных
металлов и сплавов литые и
соединительные части к ним.
Основные размеры. Методы технологических
испытаний труб: Сб. ГОСТов. -
М.: Стандартинформ, 2010

18+

Ручной ультразвуковой контроль (УЗК) сварных соединений сосудов и трубопроводов из сталей перлитных классов и мартенситно-ферритных классов

Дата публикации: 24.09.2015

Аннотация: Данная статья посвящена вопросу области применения ручного ультразвукового контроля (УЗК) сварных соединений сосудов и трубопроводов из сталей перлитных классов и мартенситно-ферритных классов, кроме литых деталей.

Ключевые слова: ультразвуковой контроль, неразрушающий контроль, эхо-метод, электронное сканирование, линейное сканирование, секторное сканирование.

Ручной ультразвуковой контроль (УЗК) сварных соединений, рассмотренный в настоящей статье, может использоваться при диагностике сосудов и трубопроводов из сталей перлитных классов и мартенситно-ферритных классов, кроме литых деталей.

УЗК контроль обеспечивает обнаружение и оценку допустимости несплошностей с эквивалентной площадью, предусмотренной нормами, регламентированными Ростехнадзором.

Описанная в данной статье методика контроля может быть применена при выполнении ультразвукового контроля оборудования основного металла и сварных соединений технических устройств, применяемых на опасном производственном объекте.

В сварных соединениях контролю и одинаковой оценке качества подлежит металл сварного шва и околошовной зоны. Ширина контролируемой околошовной зоны основного металла определяется в соответствии с требованиями Таблицы 1.

Таблица 1 - Размер околошовной зоны основного металла, оцениваемой по нормам для сварных соединений

Вид сварки Тип соединения Номинальная толщина сваренных элементов Н, мм Ширина контролируемой околошовной зоны В, не менее, мм
Дуговая и ЭЛС Стыковое до 5 вкл. 5
св. 5 до 20 вкл. номинальная толщина
св.20 20
ЭШС Стыковое независимо 50
Независимо Угловое основной элемент 3
притыкаемый элемент как для дуговой сварки, так и для ЭЛС

Ширина контролируемых участков околошовной зоны определяется от граничной поверхности его разделки, указанной в конструкторской документации.

В сварных соединениях деталей различной толщины ширина указанной зоны определяется отдельно для каждой из сваренных деталей.

Ультразвуковой контроль проводят после исправления дефектов, обнаруженных при визуальном и измерительном контроле, при температурах окружающего воздуха и поверхности изделия в месте проведения контроля от + 5 до + 40 °C. Поверхности сварных соединений, включая зоны термического влияния и зоны перемещения ПЭП, должны быть очищены от сварочного грата, пыли, грязи, окалины, ржавчины. С них должны быть удалены забоины, отслаивающаяся окалина по всей длине контролируемого участка. При подготовке поверхности сканирования, ее шероховатость должна быть не хуже Rz=40 мкм.

Ширина подготовленной под контроль зоны должна быть не менее:

Htg б + A + B - при контроле совмещенным ПЭП прямым лучом;

2 Htg б + A + B - при контроле однажды отраженным лучом и по схеме "тандем";

Н + A + B - при контроле PC ПЭП хордового типа, где А — длина контактной поверхности ПЭП (ширина для PC ПЭП).

Проведение контроля предусматривает использование следующего оборудования, материалов и инструментов:

  • импульсные ультразвуковые дефектоскопы с комплектами преобразователей и соединительными высокочастотными кабелями;
  • СО, ОСО, СОП, вспомогательные устройства, включая средства определения шероховатости поверхности (образцы шероховатости, профилометры);
  • АРД и SKH-диаграммы, номограммы;
  • вспомогательные приспособления, материалы и инструменты.

При контроле используются дефектоскопы с диапазоном регулировки измерительного аттенюатора не менее 60 дБ и шагом ступени не более 2 дБ (динамический диапазон экрана дефектоскопа - не менее 20 дБ). Скорость распространения ультразвука в материалах должна составлять 2500-6500 м/с для продольных волн и 1200-3300 м/с для поперечных. Диапазон прозвучивания по стали при работе с прямым совмещённым ПЭП в эхо-импульсном режиме - не менее 3000 мм, а при работе наклонным ПЭП - не менее 200 мм (по лучу). Диапазон измерений глубин залегания дефектов по глубиномерному устройству в эхо-импульсном режиме не менее 1000 мм по стали при работе прямым ПЭП, и не менее 100 мм по обеим координатам при работе с наклонным ПЭП.

Выбор наклонных совмещенных преобразователей и прямых преобразователей проводится с учетом толщины контролируемого сварного соединения по Таблицам 2 и 3.

Таблица 2 - Выбор наклонных совмещенных преобразователей

Номинальная толщина сваренных элементов, мм Частота, МГц Угол ввода, град, при контроле лучом
прямым отраженным
от 2 до 8 вкл. 4,0 - 10 70 - 75 70 - 75
св. 8 до 12 вкл. 2,5 - 5,0 65 - 70 65 - 70
св. 12 до 20 вкл. 2,5 - 5,0 65 - 70 60 - 70
св. 20 до 40 вкл. 1,8 - 4,0 60 - 65 45 - 65
св. 40 до 70 вкл. 1,25 - 2,5 50 - 65 40 - 50
св. 70 до 125 вкл. 1,25 - 2,0 45 - 65 Контроль не проводится

Таблица 3 - Выбор прямых преобразователей

Процедура ультразвукового контроля включает следующие операции:

  • настройка скорости развертки и глубиномера дефектоскопа;
  • установка поискового, контрольного и браковочного уровня чувствительности, параметров ВРЧ (при необходимости);
  • сканирование;
  • при появлении эхо-сигнала от возможной несплошности: определение его максимума и идентификация несплошности (выделение полезного сигнала на фоне ложных сигналов);
  • определение предельных значений характеристик несплошностей и сравнение их с нормативными;
  • измерение и регистрация характеристик несплошности, если ее эквивалентная площадь равна или превышает контрольный уровень;
  • оформление документации по результатам контроля.

Результаты контроля оцениваются с точки зрения соответствия измеренных характеристик максимально допустимым значениям, установленным в нормативных документах. По тем же нормам оценивают качество околошовной зоны, размеры которой указаны в таблице 1.

Нормативы качества по результатам УЗК определяются по действующей на момент проведения контроля руководящей нормативно-технической документацией (РД, ПКД, ТУ, ПК). Если специальные нормативы для конкретного контролируемого сварного узла отсутствуют, допускается руководствоваться нормами, приведенными в Таблице 4.

Таблица 4 - Максимально допустимые значения характеристик несплошностей, выявляемых при контроле

Номинальная толщина сварного соединения, мм Эквивалентная площадь одиночных несплошностей, мм2 Число фиксируемых одиночных несплошностей на любых 100 мм длины сварного соединения Протяженность несплошностей
Суммарная в корне шва Одиночных в сечении шва
от 2 до 3 0,6 6 20 % внутреннего периметра сварного соединения Условная протяженность компактной (точечной) несплошности
от 3 до 4 0,9 6
от 4 до 5 1,2 7
от 5 до 6 1,2 7
от 6 до 9 1,8 7
от 9 до 10 2,5 7
от 10 до 12 2,5 8
от 12 до 18 3,5 8
от 18 до 26 5,0 8
от 26 до 40 7,0 9
от 40 до 60 10,0 10
от 60 до 80 15,0 11
от 80 до 120 20,0 11

Качество сварных соединений оценивается по двухбалльной системе:

  • балл 1 - неудовлетворительное качество: сварные соединения с несплошностями, измеренные характеристики или количество которых превышают максимально допустимые значения по действующим нормам;
  • балл 2 - удовлетворительное качество: сварные соединения с несплошностями, измеренные характеристики или количество которых не превышают установленных норм. При этом сварные соединения считают ограниченно годными (балл 2а), если в них обнаружены несплошности с А к <А<А бр; ∆L <∆L 0 ; n< n 0 , и абсолютно годными (балл 2б), если в них не обнаружены несплошности с А ≥ А к, где А - измеренная амплитуда эхо-сигнала от несплошности; А к и А бр - амплитуды контрольного и браковочного уровней чувствительности на глубине залегания несплошности; ∆L и ∆L 0 - измеренная условная протяженность несплошности и ее предельно допустимое значение; n и n 0 - измеренное количество несплошностей с A к ≤ A ≤ A бр и ДL ≤ ДL 0 на единицу длины сварного соединения (удельное количество) и предельно допустимое количество.

Основными измеряемыми характеристиками выявленной несплошности являются:

  • соотношение амплитудной и/или временной характеристики принятого сигнала и соответствующей характеристики опорного сигнала;
  • эквивалентная площадь несплошности;
  • координаты несплошности в сварном соединении;
  • условные размеры несплошности;
  • условное расстояние между несплошностями;
  • количество несплошностей на определенной длине соединения.

Измеряемые характеристики, используемые для оценки качества конкретных соединений, должны быть регламентированы технологической документацией на контроль.

Несплошность считают поперечной (тип «Т» по ГОСТ Р 55724-2013, приложение Г), если амплитуда эхо-сигнала от нее при озвучивании наклонным совмещенным ПЭП вдоль шва (независимо от условной протяженности) Aпоп не менее, чем на 9 дБ больше, чем при озвучивании поперек шва Апрод. При этом рассматриваются только эхо-сигналы с амплитудой, равной или большей контрольного уровня чувствительности Ак для глубины залегания данной несплошности.

Если разница амплитуд эхо-сигналов в указанных направлениях озвучивания меньше 9 дБ, несплошность считают продольной.

При измерении ориентации несплошности усиление шва в месте измерений должно быть удалено и заглажено заподлицо с основным металлом.

Несплошность считают или объемной, или плоскостной в зависимости от измеренных значений идентификационных характеристик (признаков) по ГОСТ Р 55724-2013, раздел 10.

Идентификацию формы несплошности допускается проводить с помощью дефектоскопов с визуализацией дефектов.

При контроле сварных соединений с проточкой под подкладное кольцо оценку дефектов проводят для номинальной толщины сваренных элементов (в зоне проточки).

При экспертном или дублирующем контроле результаты контроля двумя дефектоскопистами следует считать сопоставимыми, если эквивалентные площади одной и той же несплошности отличаются не более, чем в 1,4 раза (3 дБ).

Отступления от норм оценки обнаруженных несплошностей допускаются в соответствии с порядком, предусмотренным Правилами Ростехнадзора, а также по специальным техническим решениям, согласованным в установленном порядке.

Список информационных источников:

  1. ГОСТ Р 55724-2013 «Контроль неразрушающий. Соединения сварные. Методы ультразвуковые».
  2. ГОСТ 12.1.001 «Ультразвук Общие требования безопасности».
  3. ГОСТ 12.3.019 «Испытания и измерения электрические. Общие требования безопасности».
  4. ГОСТ 26266-90 «Контроль неразрушающий. Преобразователи ультразвуковые. Общие технические требования».
  5. ПБ 03-440-02 «Правил аттестации специалистов неразрушающего контроля».
  6. РД 34.10.133-97 «Инструкция по настройке чувствительности ультразвукового дефектоскопа».
  7. СП 53-101-98 «Изготовление и контроль качества стальных конструкций».

С.А. Шевченко, Н.Л. Михайлова, А.А. Шестаков, С.Г. Царева, Э.В. Шишков

Швы в конструкциях со сварными соединениями должны постоянно подвергаться контролю. И это не зависит от того, когда соединение было сделано. Для этого используются различные методы, один из которых – ультразвуковая дефектоскопия (УЗД). Она по точности проведенных исследований превосходит и рентгеноскопию, и радио-дефектоскопию, и гамма-дефектоскопию.

Необходимо отметить, что эта методика не нова. Ее используют с тридцатых годов прошлого столетия, и сегодня ультразвуковой контроль сварных соединений популярен, потому что с его помощью можно выявить мельчайшие дефекты внутри сварочного шва. И, как показывает практика, именно скрытые дефекты являются основными серьезными причинами ненадежности свариваемой конструкции.

Технология ультразвуковой дефектоскопии. (Слева отсутствие дефекта, справа дефет)

В основе ультразвуковых колебания лежат обычные акустические волны, которые имеют частоту колебания выше 20 кГц. Человек их не слышит. Проникая внутрь металла, волны попадают между его частицами, которые находятся в равновесии, то есть, колеблются в одной фазе. Расстояние между ними равно длине ультразвуковой волны. Этот показатель зависит от скорости прохождения через металлический шов и частоты самих колебаний. Зависимость определяется по формуле:

  • L – это длина волны;
  • с – скорость ее перемещения;
  • f – частота колебаний.

Скорость же зависит от плотности материала. К примеру, в продольном направлении ультразвуковые волны двигаются быстрее, чем в поперечном. То есть, если на пути волны попадаются пустоты (другая среда), то изменяется и ее скорость. При этом, встречая на своем пути различные дефекты, происходит отражение волн от стенок раковин, трещин и пустот. А соответственно и отклонение от направленного потока. Изменение движения оператор видит на мониторе УЗК прибора, и по определенным характеристикам определяет, какой дефект встал на пути движения акустических волн.

К примеру, обращается внимание на амплитуду отраженной волны, тем самым определяется размер дефекта в сварочном шве. Или по времени распространения ультразвуковой волны в металле, что определяет расстояние до дефекта.

Виды ультразвукового контроля

В настоящее время в промышленности применяются несколько способов ультразвуковой дефектоскопии сварных швов. Рассмотрим каждый из них.

  1. Теневой метод диагностики. Это методика основана на использовании и сразу двух преобразователей, которые устанавливаются по разные стороны исследуемого объекта. Один из них излучатель, второй – приемник. Место установки – строго перпендикулярно исследуемой плоскости сварного шва. Излучатель направляет поток ультразвуковых волн на шов, приемник их принимает с другой стороны. Если в потоке волн образуется глухая зона, то это говорит о том, что на его пути попался участок с другой средой, то есть, обнаруживается дефект.
  2. Эхо-импульсный метод. Для этого используется один УЗК дефектоскоп, который и излучает волны, и принимает их. При этом используется технология отражения ультразвука от стенок дефектных участков. Если волны прошли сквозь металл сварочного шва и не отразились на приемном устройстве, то дефектов в нем нет. Если произошло отражение, значит, внутри шва присутствует какой-то изъян.
  3. Эхо-зеркальный. Данный ультразвуковой контроль сварных швов – это подтип предыдущего. В нем используется два прибора: излучатель и приемник. Только устанавливаются они по одну сторону от исследуемого металла. Излучатель посылает волны под углом, они попадают на дефекты и отражаются. Эти отраженные колебания и принимает приемник. Обычно, таким образом, регистрируют вертикальные дефекты внутри сварочного шва – трещины.
  4. Зеркально-теневой. Этот ультразвуковой метод контроля – симбиоз теневого и зеркального. Оба прибора устанавливаются с одной стороны от исследуемого металла. Излучатель посылает косые волны, они отражаются от стенки основного металла и принимаются приемником. Если на пути отраженных волн не встретились изъяны сварного шва, то они проходят без изменений. Если на приемнике отразилась глухая зона, то, значит, внутри шва есть изъян.
  5. Дельта-метод. В основе этого способа контроля сварных соединений ультразвуком лежит переизлучение дефектом направленных акустических колебаний внутрь сварного соединения. По сути, отраженные волны делятся на зеркальные, трансформируемые в продольном направлении и переизлучаемые. Приемник может уловить не все волны, в основном отраженные и движущиеся прямо на него. От количества полученных волн будет зависеть величина дефекта и его форма. Не самая лучшая проверка, потому что она связана с тонкой настройкой оборудования, сложность расшифровки полученных результатов, особенно, когда проверяется сварочный шов шириною более 15 мм. При проведении ультразвукового контроля качества металла этим способом предъявляются жесткие требования к чистоте сварочного шва.

Вот такие методы ультразвукового контроля сегодня используются для определения качества сварных соединений. Необходимо отметить, что чаще всего специалисты используют эхо-импульсный и теневой метод. Остальные реже. Оба вариант в основном используются в ультразвуковом контроле тру.

Как проводится ультразвуковая дефектоскопия

Все выше описанные технологии относятся к категории ультразвуковых методов неразрущающего контроля. Они удобны и просты в исполнении. Рассмотрим, как теневой метод используется на практике. Все действия проводятся по ГОСТ.

  • Производится зачистка сварного шва и прилегающих к нему участков на ширину 50-70 мм с каждой стороны.
  • Чтобы получились более точные результаты на соединительный шов наносится смазочное средство. К примеру, это может быть солидол, глицерин или любой другое техническое масло.
  • Производится настройка прибора по ГОСТ.
  • Излучатель устанавливается с одной стороны и включается.
  • С противоположной стороны искателем (приемником) производятся зигзагообразные перемещения вдоль сварного стыка. При этом прибор немного поворачивают туда-сюда вокруг своей оси на 10-15°.
  • Как только на мониторе появится сигнал с максимальной амплитудой, то это вероятность, что в металле шва обнаружен дефект. Но необходимо удостоверится, что отражающий сигнал не стал причиной неровности шва.
  • Если не подтвердилось, то записываются координаты изъяна.
  • Согласно ГОСТ испытание проводится за два или три прохода.
  • Все результаты записываются в специальный журнал.

Внимание! Контроль качества сварных угловых соединений (тавровых) производится только эхо-импульсным способом, теневой метод здесь не подойдет.

Параметры оценки результатов

Чувствительность прибора – основной фактор качества проводимых работ. Как с его помощью можно распознать параметры дефекта.

Во-первых, определяется количество изъянов. Даже при самых близких друг к другу расстояниях эхо-метод может определить: один дефект в сварочном шве или два (несколько). Их оценка производится по следующим критериям:

  • амплитуда акустической волны;
  • ее протяженность (условная);
  • размеры дефекта и его форма.

Протяженность волны и ширину изъяна можно определить путем перемещения излучателя вдоль сварочного соединения. Высоту трещины или раковины можно узнать, исходя из разницы временных интервалов между отраженной волной и излученной раньше. Форма же дефекта определяется специальной методикой. В основе ее лежит форма отраженного сигнала, появляющаяся на мониторе.

Метод ультразвуковой дефектоскопии сложный, поэтому качество полученных результатов зависит от квалификации оператора и соответствия полученных показателей, которые регламентирует ГОСТ.

Достоинства и недостатки ультразвукового контроля труб

К достоинствам метода для контроля сварных швов можно отнести следующие критерии.

  • Обследование проходит быстро.
  • Диагностический результат высокий.
  • Метод контроля сварных швов с помощью ультразвука – самый дешевый вариант.
  • Он же и самый безопасный для человека.
  • Устройство для контроля качества шва – портативный прибор, поэтому мобильность технологии обеспечивается.
  • Ультразвуковая диагностика проводится без повреждения исследуемой детали.
  • Нет необходимости останавливать оборудование или объект для того, чтобы провести контроль сварки.
  • Можно проверять стыки нержавеющих металлов, черных и цветных.

Недостатки тоже есть.

  • Контроль сварных соединений трубопроводов или других конструкций не дает точности по форме найденного дефекта. Все дело в том, что в трещинах или раковинах сварного шва могут присутствовать воздух (газ) или шлак. У двух материалов плотность разная, а значит, и разная отражательная способность.
  • Сложно определить дефекты в деталях со сложной конфигурацией. Отправленные волны могут отразиться на другом участке шва, а не на исследуемом, за счет кривизны. А это выдаст некорректную информацию.
  • Сложно провести ультразвуковой контроль труб, если металл, из которого они изготовлены, имеет крупнозернистую структуру. Внутри материала будет происходить рассеивания направленного потока и затухание отраженных волн.
  • Важно ответственно подойти к очистке сварного шва. Его волнистость или загрязнение, ржавчина или окалины, капли разбрызганного металла или воздушные седла и поры на поверхности создадут преграду к получению правильных показателей, соответствующих ГОСТ.

В последнее время государственными органами РФ декларируется «разворот на Восток» и потенциальное тесное сотрудничество российских производителей/заказчиков с китайскими. Для качественной совместной работы с представителями КНР необходимо говорить с ними на одном языке, и в частности ориентироваться в используемой обеими сторонами терминологии и стандартной нормативной документации. В данной статье мы хотели бы обобщить наш опыт взаимодействия с коллегами из Китайской Народной Республики по одному локальному вопросу - диагностированию обсадных колонн, и на его примере рассмотреть сходство и отличия нормативной документации РФ и КНР.

Обсадные трубы применяются для крепления нефтяных и газовых скважин в процессе их строительства и эксплуатации. Между собой обсадные трубы соединяются при помощи муфтовых или безмуфтовых (интегральных) резьбовых соединений. На месте строительства всегда проводится многостадийный контроль качества строительства, состоящий из следующих операций: контроль наличия сопроводительной документации (сертификата); проверка соответствия данных сертификата маркировке труб; визуальный контроль; инструментальный контроль; неразрушающий контроль; контроль оправкой; гидравлическое испытание.

Все работы по контролю качества должны определяться инструкциями изготовителя, которые должны включать соответствующую методику и количественные или качественные критерии приемки. Инструкции по неразрушающему контролю должны соответствовать требованиям настоящих технических условий и требованиям национальных и международных стандартов, выбранных изготовителем.

На территории Российской Федерации в данный момент действуют основные ГОСТ 632-1980 и ГОСТ 53366-2009 (Отменен, с 01.01.2015 пользоваться ГОСТ 31446-2012. По приказу Федерального агентства по техническому регулированию и метрологии от 22.10.2014 № 1377-ст - восстановлен на территории РФ с 01.01.2015 до 01.01.2017), регламентирующие требования к неразрушающему контролю и уровни контроля бесшовных и электросварных труб. Все обсадные трубы должны быть проверены на наличие дефектов по всей длине (от торца до торца) методами неразрушающего контроля.

Обсадные трубы не должны иметь дефектов, которые по ГОСТ Р 53366-2009 относятся к недопустимым дефектам, и должны соответствовать требованиям, установленным в этом стандарте. Стандартные методы неразрушающего контроля труб являются традиционными проверенными методами и предусматривают процедуры неразрушающего контроля, широко применяемые для контроля трубных изделий во всем мире. Допускается, однако, применение других методов и процедур неразрушающего контроля, способных выявлять дефекты, например, для применения труб в скважинах со специальными условиями эксплуатации. В таких случаях рекомендуется использовать другие методы неразрушающего контроля, которые позволяют подтвердить необходимое качество труб и их пригодность для спуска в скважину.

Рассмотрим методы неразрушающего контроля для обсадных колонн, используемые на территории РФ и КНР:

1) Ультразвуковой контроль (ультразвуковой метод)

Ультразвук распространяется по всей окружности материала. Акустические характеристики материала и внутренние структурные изменения отражаются на распространении ультразвуковых волн. Регистрация сигнала и его анализ дает представление о степени поврежденности материала. В ГОСТе 53366-2009 указаны только международные стандарты, в соответствии с которыми должны быть инспектированы обсадные колонны: ИСО 9303, ИСО 9503 и АСТМ Е 213. Однако в ГОСТе 13680-2011 для выявления расслоений, площадь проекции которых на наружную поверхность составляет не более 260 мм 2 , предлагается действовать в соответствии с ИСО 10124:1994 (Таблица 1).

В то же время на территории России действуют стандартные методы ультразвукового неразрушающего контроля: ГОСТ Р ИСО 10332-99 «Трубы стальные напорные бесшовные и сварные (кроме труб, изготовленных дуговой сваркой под флюсом)», ГОСТ 12503-75 «Сталь. Методы ультразвукового контроля. Общие требования», ГОСТ 14782-86 «Контроль неразрушающий. Соединения сварные. Методы ультразвуковые» (Утратил силу на территории РФ с 01.07.2015. Пользоваться ГОСТ Р 55724-2013), ГОСТ Р ИСО 10893-12-2014 «Трубы стальные бесшовные и сварные. Часть 12. Ультразвуковой метод автоматизированного контроля толщины стенки по всей окружности», однако, для выявления дефектов обсадных колонн они не применяются. В основном используются международные стандарты ультразвукового метода неразрушающего контроля, перечисленные выше, в то время как на территории КНР контроль целостности труб обсадных колонн выявляют в соответствии с международными и/или собственными стандартами 1 .

В таблице 1 представлены важнейшие стандарты ультразвукового контроля обсадных колонн, из стандартных методов неразрушающего контроля трубы, применяемые как в России, так и в КНР.

Таблица 1

Номер стандарта

Название стандарта

Номер стандарта

Название стандарта

Трубы стальные бесшовные и сварные (кроме труб, полученных дуговой сваркой под флюсом) напорные. Ультразвуковой контроль всей периферийной поверхности для обнаружения продольных несовершенств

Обозначение заменяющего: ISO 10893-10:2011 Неразрушающий контроль стальных труб. Часть 10. Автоматический ультразвуковой контроль по всей окружности бесшовных и сварных стальных труб (кроме труб, полученных дуговой сваркой под флюсом) для обнаружения продольных и/или поперечных дефектов

Стандартный метод ультразвукового контроля металлических трубопроводных труб

Обозначение заменяющего: ISO 10893-10:2011 Неразрушающий контроль стальных труб. Часть 10. Автоматический ультразвуковой контроль по всей окружности бесшовных и сварных стальных труб (кроме труб, полученных дуговой сваркой под флюсом) для обнаружения продольных и/или поперечных дефектов

Трубы стальные бесшовные напорные. Ультразвуковой контроль всей периферийной поверхности для обнаружения поперечных несовершенств

Обозначение заменяющего: ISO 10893-10:2011 Неразрушающий контроль стальных труб. Часть 10. Автоматический ультразвуковой контроль по всей окружности бесшовных и сварных стальных труб (кроме труб, полученных дуговой сваркой под флюсом) для обнаружения продольных и/или поперечных дефектов

Трубы стальные напорные бесшовные и сварные (кроме труб, изготовленных дуговой сваркой под флюсом). Ультразвуковой метод контроля для обнаружения слоистых несовершенств

Обозначение заменяющего: ISO 10893-8:2011 Неразрушающий контроль стальных труб. Часть 8. Автоматический ультразвуковой контроль бесшовных и сварных стальных труб для обнаружения дефектов расслоения

Неразрушающий контроль стальных труб. Автоматизированный ультразвуковой контроль стальных бесшовных и сварных труб (кроме труб, полученных дуговой сваркой под флюсом) на герметичность

Неразрушающий контроль. Ультразвуковой контроль. Общие принципы

ISO 10893-3:2011

Трубы стальные, полученные электрической контактной сваркой и индукционной сваркой, напорные. Ультразвуковой контроль сварного шва для обнаружения продольных несовершенств

Обозначение заменяющего: ISO 10893-11:2011 Неразрушающий контроль стальных труб. Часть 11. Автоматический ультразвуковой контроль шва сварных стальных труб для обнаружения продольных и/или поперечных дефектов

ISO 10893-10:2011

Неразрушающий контроль стальных труб. Часть 10. Автоматический ультразвуковой контроль по всей окружности бесшовных и сварных стальных труб (кроме труб, полученных дуговой сваркой под флюсом) для обнаружения продольных и/или поперечных дефектов

Стандартный метод ультразвукового контроля зоны сварки сварных трубопроводных и насосно-компрессорных труб

Трубы стальные бесшовные. Метод ультразвукового контроля

(Аналог: ISO 9303-1989 Трубы стальные бесшовные и сварные (кроме труб, полученных дуговой сваркой под флюсом) напорные. Ультразвуковой контроль всей периферийной поверхности для обнаружения продольных несовершенств)

SY/T 6423.6-1999

Нефтяная и газовая промышленность. Стальные трубы напорные, методы неразрушающего контроля. Трубы стальные бесшовные и сварные (кроме труб, полученных дуговой сваркой под флюсом), ультразвуковой метод контроля слоистых несовершенств

(Аналог ISO 10124-1994 Трубы стальные напорные бесшовные и сварные (кроме труб, изготовленных дуговой сваркой под флюсом)
Обозначение заменяющего: SY/T 6423.4-2013 Нефтеная и газовая промышленность. Методы неразрушающего контроля - Часть 4: Автоматический ультразвуковой контроль слоистых несовершенств бесшовных и сварных стальных труб

SY/T 6423.7-1999

Нефтяная и газовая промышленность. Трубы стальные напорные, методы неразрушающего контроля. Трубы стальные бесшовные и сварные, ультразвуковой метод контроля концов труб для обнаружения слоистых несовершенств

(Аналог: ISO 11496-1993 Трубы стальные бесшовные и сварные напорные. Ультразвуковой контроль концов труб для обнаружения слоистых несовершенств)
Обозначение заменяющего: SY/T 6423.4-2013 Нефтяная и газовая промышленность. Методы неразрушающего контроля - Часть 4: Автоматический ультразвуковой контроль слоистых несовершенств бесшовных и сварных стальных труб

2) Магнитный контроль (метод рассеяния магнитного потока)

Следующим методом неразрушающего контроля, которым рекомендуется пользоваться в соответствии с требованиями ГОСТ 53366-2009, является метод рассеяния магнитного потока.

Магнитная дефектоскопия труб обсадных колонн методом рассеянного потока основана на обнаружении магнитных потоков рассеяния в ферромагнитном материале с высокой магнитной проницаемостью путем измерения изменяемых характеристик после намагничивания изделия. После намагничивания магнитный поток, распространяясь по исследуемому объекту и встречая на своем пути дефект, огибает его вследствие того, что магнитная проницаемость дефекта значительно ниже магнитной проницаемости основного металла. В результате этого часть магнитно-силовых линий вытесняется дефектом на поверхность, образуя местный магнитный поток рассеяния.

Методами магнитного контроля не могут быть обнаружены дефекты, которые вызывают возмущение в распределении силовых линий магнитного потока без образования местного потока рассеяния. Возмущение потока зависит от величины и формы дефекта, глубины его залегания и его ориентации относительно направления магнитного потока. Поверхностные дефекты, расположенные перпендикулярно магнитному потоку, создают значительные потоки рассеяния; дефекты, ориентированные вдоль направления магнитных силовых линий, практически не вызывают появления потоков рассеяния. Наличие продольных и поперечных дефектов приводит к необходимости проводить двойной контроль с использованием комбинированного намагничивания.

В таблице 2 представлены стандарты магнитной дефектоскопии методом рассеяния магнитного потока. В таблице 2 не представлены стандартные методы неразрушающего контроля, действующие в РФ: ГОСТ Р 55680-2013 «Контроль неразрушающий. Феррозондовый метод» (действующий с 01.07.2015, заменяющий ГОСТ 21104-75); ГОСТ Р ИСО 10893-3-2016 «Трубы стальные бесшовные и сварные. Часть 3. Автоматизированный контроль методом рассеяния магнитного потока по всей поверхности труб из ферромагнитной стали для обнаружения продольных и (или) поперечных дефектов» (дата введения в действие 01.11.2016).

Таблица 2

Стандарты, действующие на территории РФ

Стандарты, действующие на территории КНР

Номер стандарта

Название стандарта

Номер стандарта

Название стандарта

Трубы стальные бесшовные и сварные (кроме труб, полученных дуговой сваркой под флюсом) напорные. Испытание труб из ферромагнитной стали методом рассеяния по всей окружности флюса с помощью магнитного преобразователя для обнаружения продольных дефектов

Обозначение заменяющего: ISO 10893-3:2011 Неразрушающий контроль стальных труб. Часть 3. Автоматический контроль методом рассеяния магнитного потока по всей окружности бесшовных и сварных труб из ферромагнитной стали (кроме труб, полученных дуговой сваркой под флюсом) для обнаружения продольных и/или поперечных дефектов

Стандартный метод контроля ферромагнитных трубных изделий рассеянием магнитного потока

Обозначение заменяющего: ISO 10893-3:2011 Неразрушающий контроль стальных труб. Часть 3. Автоматический контроль методом рассеяния магнитного потока по всей окружности бесшовных и сварных труб из ферромагнитной стали (кроме труб, полученных дуговой сваркой под флюсом) для обнаружения продольных и/или поперечных дефектов

Трубы стальные бесшовные напорные. Контроль всей периферийной поверхности труб из ферромагнитной стали путем исследования магнитных полей рассеяния для обнаружения поперечных несовершенств

Обозначение заменяющего: ISO 10893-3:2011 Неразрушающий контроль стальных труб. Часть 3. Автоматический контроль методом рассеяния магнитного потока по всей окружности бесшовных и сварных труб из ферромагнитной стали (кроме труб, полученных дуговой сваркой под флюсом) для обнаружения продольных и/или поперечных дефектов

Стальная труба - Метод рассеяния магнитного потока

ISO 10893-3:2011

Неразрушающий контроль стальных труб. Часть 3. Автоматический контроль методом рассеяния магнитного потока по всей окружности бесшовных и сварных труб из ферромагнитной стали (кроме труб, полученных дуговой сваркой под флюсом) для обнаружения продольных и/или поперечных дефектов

3) Вихретоковый контроль (вихретоковый метод)

Контроль вихретоковым методом - это формируемое ферромагнитной катушкой, находящейся вблизи поверхности контролируемого объекта, поле вихревых токов; анализ изменения электромагнитного поля вихревых токов под действием тех или иных дефектов. Метод применим только для проводящего материала. Вихретоковый контроль может быть использован для тестирования труб, сварного шва и трещин в поверхностном слое наплавки, и косвенного измерения длины дефекта.

В таблице 3 представлены стандарты тестирования вихретоковым методом, российские и китайские специализированные стандарты для дефектоскопии обсадных колонн данным методом отсутствуют. Однако на территории Российской Федерации действует ряд стандартов: ГОСТ 24289-80 «Контроль неразрушающий вихретоковый. Термины и определения», ГОСТ Р ИСО 15549-2009 «Контроль неразрушающий. Контроль вихретоковый. Основные положения», ГОСТ Р ИСО 12718-2009 «Контроль неразрушающий. Контроль вихретоковый. Термины и определения», ГОСТ Р 55611-2013 «Контроль неразрушающий вихретоковый. Термины и определения». На территории Китайской Народной Республики данный метод стандартизирован только для труб других классов (сортамента).

Таблица 3

Стандарты, действующие на территории РФ

Стандарты, действующие на территории КНР

Номер стандарта

Название стандарта

Номер стандарта

Название стандарта

Трубы стальные бесшовные и сварные (кроме труб, полученных дуговой сваркой под флюсом) напорные. Контроль методом вихревых токов для обнаружения несовершенств

Обозначение заменяющего: ISO 10893-2:2011 Неразрушающий контроль стальных труб. Часть 2. Автоматический метод вихретокового контроля стальных бесшовных и сварных труб (кроме труб, полученных дуговой сваркой под флюсом) для обнаружения дефектов

Стандартный метод контроля вихревыми токами стальных трубных изделий с применением магнитного насыщения

ISO 10893-2:2011

Неразрушающий контроль стальных труб. Часть 2. Автоматический метод вихретокового контроля стальных бесшовных и сварных труб (кроме труб, полученных дуговой сваркой под флюсом) для обнаружения дефектов

Неразрушающий контроль. Контроль вихревыми токами. Словарь

Неразрушающий контроль. Испытание вихревыми токами. Общие принципы

BS-EN -0246-3-2000

Неразрушающий контроль стальных труб. Часть 3. Автоматический метод контроля вихревыми токами стальных бесшовных и сварных (кроме труб, полученных дуговой сваркой под флюсом) труб для обнаружения дефектов

Стальная труба - Контроль вихретоковым методом

(Аналог: ISO 9304-1989 Трубы стальные бесшовные и сварные (кроме труб, полученных дуговой сваркой под флюсом) напорные. Контроль методом вихревых токов для обнаружения несовершенств)

GB/T 12604.6-2008

Неразрушающий контроль. Терминология. Вихретоковый метод

Неразрушающий контроль. Импульсный вихретоковый метод

JB/T 4730.6-2005

Неразрушающий контроль оборудования под давлением - Часть 6: Вихретоковый метод

Обозначение заменяющего: NB/T 47013.6-2015 Неразрушающий контроль оборудования под давлением - Часть 6: Вихретоковый метод

4) Магнитный контроль (магнитопорошковый метод)

Магнитопорошковый контроль - использование магнитного порошка, который адсорбируется в местах дефектов, образуя «магнитную метку» - валики черного магнитного порошка, контроль осуществляется визуально. Метод отражает поверхностные и внутренние дефекты, при этом чувствительность метода не зависит от окраски и металлизации поверхности. Магнитопорошковый метод предпочтительнее для ферромагнитных материалов по сравнению с методом проникающих веществ, так как более оперативен и прост в применении. Главный недостаток - ограниченный доступ к ферромагнитному материалу, для того чтобы полностью обследовать поверхность необходимы специальное оборудование и источник питания. После проведения испытаний наблюдается остаточная намагниченность, которую затруднительно устранить. В таблице 4 приведены международные стандарты по магнитопорошковому методу контроля обсадных колонн, китайские стандарты контроля данным методом, применяемые в машиностроении: контроль качества оборудования под давлением магнитопорошковым методом. В таблицу 4 так же не вошли стандарты, действующие на территории России, т.к. на них не было ссылок в определяющем ГОСТе 53366-2009: ГОСТ Р 56512-2015 «Контроль неразрушающий. Магнитопорошковый метод. Типовые технологические процессы» (дата введения в действие 01.11.2016), ГОСТ Р ИСО 9934-1-2011 «Контроль неразрушающий. Магнитопорошковый метод. Часть 1. Основные требования», ГОСТ Р ИСО 9934-2-2011 «Контроль неразрушающий. Магнитопорошковый метод. Часть 2. Дефектоскопические материалы», ГОСТ 21105-87 «Контроль неразрушающий. Магнитопорошковый метод», ГОСТ Р ИСО 10893-5-2016 «Трубы стальные бесшовные и сварные. Часть 5. Магнитопорошковый контроль труб из ферромагнитной стали для обнаружения поверхностных дефектов» (дата введения в действие 01.11.2016).

Таблица 4

Стандарты, действующие на территории РФ

Стандарты, действующие на территории КНР

Номер стандарта

Название стандарта

Номер стандарта

Название стандарта

Трубы стальные напорные бесшовные и сварные. Контроль тела трубы магнитопорошковым методом для обнаружения поверхностных несовершенств

Обозначение заменяющего: ISO 10893-5:2011 Неразрушающий контроль стальных труб. Часть 5. Метод магнитопорошкового контроля бесшовных и сварных труб из ферромагнитной стали для обнаружения поверхностных дефектов

Руководство по магнитопорошковому контролю

Трубы стальные напорные бесшовные и сварные. Контроль концов труб магнитопорошковым методом для обнаружения слоистых несовершенств

Обозначение заменяющего: ISO 10893-5:2011 Неразрушающий контроль стальных труб. Часть 5. Метод магнитопорошкового контроля бесшовных и сварных труб из ферромагнитной стали для обнаружения поверхностных дефектов

ISO 10893-5:2011

Неразрушающий контроль стальных труб. Часть 5. Метод магнитопорошкового контроля бесшовных и сварных труб из ферромагнитной стали для обнаружения поверхностных дефектов

GB/T 12604.5-2008

Неразрушающий контроль. Терминология. Магнитопорошковый метод

JB/T 4730.4-2005

Неразрушающий контроль оборудования под давлением - Часть 4: Магнитопорошковый метод

Обозначение заменяющего: NB/T 47013.4-2015 Неразрушающий контроль оборудования под давлением - Часть 4: Магнитопорошковый метод

5) Контроль проникающими веществами (капиллярная дефектоскопия)

Метод проникающих веществ основан на проникновении специальной жидкости - пенетранта - в полости поверхностных и сквозных несплошностей объекта контроля, с последующим извлечением пенетранта из дефектов. Наиболее распространенным методом является капиллярный способ, который подходит для диагностики объектов, изготовленных из металлов и керамики. Продолжительность дефектоскопии зависит от физических свойств жидкости, характера обнаруживаемых дефектов и способа заполнения жидкостью полостей дефектов. В течение получаса можно обнаружить поверхностную усталость, коррозионное растрескивание под напряжением и дефект сварного шва, метод позволяет определить размер трещины.

В ГОСТе 53366-2009 не указаны стандарты капиллярного метода контроля, выявления дефектов обсадной колонны, но в данным стандартом допускается применение других методов и способов неразрушающего контроля. В то же время ГОСТ Р ИСО 13680-2011 рекомендует пользоваться ИСО 12095 или АСТМ Е 165, которые приведены в таблице 5. Внутренние Российские стандарты неразрушающего контроля методом проникающих жидкостей разработаны и действуют, однако до настоящего момента для инспектирования обсадных колонн не применялись: ГОСТ Р ИСО 3059-2015 «Контроль неразрушающий. Проникающий контроль и магнитопорошковый метод. Выбор параметров осмотра» (дата введения в действие 01.06.2016), ГОСТ Р ИСО 3452-1-2011 «Контроль неразрушающий. Проникающий контроль. Часть 1. Основные требования», ГОСТ Р ИСО 3452-2-2009 «Контроль неразрушающий. Проникающий контроль. Часть 2. Испытания пенетрантов», ГОСТ Р ИСО 3452-3-2009 «Контроль неразрушающий. Проникающий контроль. Часть 3. Испытательные образцы», ГОСТ Р ИСО 3452-4-2011 «Контроль неразрушающий. Проникающий контроль. Часть 4. Оборудование», ГОСТ Р ИСО 12706-2011 «Контроль неразрушающий. Проникающий контроль. Словарь», ГОСТ 18442-80 «Контроль неразрушающий Капиллярные методы Общие требования».

В таблице 5 представлены относящиеся к данному методу диагностики обсадных колонн стандарты. Внутренние Китайские стандарты контроля методом проникающих жидкостей обсадных колонн отсутствуют.

Таблица 5

Стандарты, действующие на территории РФ

Стандарты, действующие на территории КНР

Номер стандарта

Название стандарта

Номер стандарта

Название стандарта

Трубы стальные сварные и бесшовные напорные. Испытание методом проникающих жидкостей

Обозначение заменяющего: ISO 10893-4:2011 Неразрушающий контроль стальных труб. Часть 4. Контроль методом проникающих жидкостей стальных бесшовных и сварных труб для обнаружения поверхностных дефектов

ISO 10893-4:2011

Неразрушающий контроль стальных труб. Часть 4. Контроль методом проникающих жидкостей стальных бесшовных и сварных труб для обнаружения поверхностных дефектов

Стандартная методика для капиллярного контроля. Общая промышленность

GB/T 12604.3-2005

Неразрушающий контроль. Терминология. Капилярный метод

(Аналог: ISO 12706-2009 Контроль неразрушающий. Капиллярный контроль. Словарь)
Обозначение заменяющего: GB/T 12604.3-2013 Неразрушающий контроль. Терминология. Капилярный метод

GB/T 18851.1-2012

Неразрушающий контроль - Капиллярный метод - Часть 1: Общие принципы

(Аналог: ISO 3452-1-2008 Неразрушающий контроль. Метод проникающих жидкостей. Часть 1. Общие принципы)

JB/T 4730.5-2005

Неразрушающий контроль оборудования под давлением - Часть 5: Метод проникающих жидкостей

Обозначение заменяющего: NB/T 47013.5-2015 Неразрушающий контроль оборудования под давлением - Часть 5: Метод проникающих жидкостей

6) Рентгеновский контроль (радиографический метод)

Рентгенографический метод предусматривает использование рентгеновского излучения, проходящего через металл шва и создающего на рентгенографической пленке изображение, отображающее наличие различных дефектов. Степень засвечивания пленки будет больше в местах расположения дефектов.

В соответствии с ГОСТ ИСО 3183-2012 «Трубы стальные для трубопроводов нефтяной и газовой промышленности. Общие технические условия» рентгенографическому контролю на расстоянии не менее 200 мм от торца трубы должен быть подвергнут сварной шов каждого из концов труб. Этому методу контроля подвергаются трубы:

  • с одним или двумя продольными швами или одним спиральным швом, полученными способом сочетания дуговой сварки металлическим электродом в среде защитного газа и дуговой сварки под флюсом;
  • с одним или двумя продольными швами или одним спиральным швом, полученными способом дуговой сварки под флюсом.

В таблице 6 представлены соответствующие стандарты, относящиеся к радиографическому контролю сварного шва обсадной колонны. Часть стандартов по контролю сварных швов труб не указана.

Таблица 6

Стандарты, действующие на территории РФ

Стандарты, действующие на территории КНР

Номер стандарта

Название стандарта

Номер стандарта

Название стандарта

Трубы стальные напорные, полученные дуговой сваркой под флюсом. Радиографический контроль сварного шва для обнаружения несовершенств

Обозначение заменяющего: ISO 10893-6:2011 Неразрушающий контроль стальных труб. Часть 6. Радиографический контроль шва сварных стальных труб для обнаружения дефектов

ISO 10893-6:2011

Неразрушающий контроль стальных труб. Часть 6. Радиографический контроль шва сварных стальных труб для обнаружения дефектов

Руководство по рентгенографическому тестированию

ISO 10893-7:2011

Неразрушающий контроль стальных труб. Часть 7. Цифровой радиографический контроль шва сварных стальных труб для обнаружения дефектов

JB/T 4730.2-2005

Неразрушающие методы контроля оборудования под давлением - Часть 2: Рентгеновское излучение

Обозначение заменяющего: NB/T 47013.2-2015 Неразрушающие методы контроля оборудования под давлением - Часть 2: Рентгеновское излучение

GB/T 12604.2-2005

Неразрушающий метод контроля. Терминология. Радиографический контроль

(Аналог: ISO 5576:1997 Контроль неразрушающий. Промышленная радиология с использованием рентгеновских и гамма-лучей. Словарь)
  1. В РФ и КНР при обследовании труб обсадных колонн на наличие дефектов различными неразрушающими методами контроля в основном ориентируются на международные стандарты ISO и АSТМ.
  2. Неразрушающий контроль обсадных труб проводится в соответствии с, как минимум, одним и тем же международным стандартом как в России так и в Китае.
  3. Основными методами неразрушающего контроля обсадных колонн по ГОСТ 632-1980 и ГОСТ 53366-2009 являются: ультразвуковой метод, метод рассеяния магнитного потока, вихретоковый метод и магнитопорошковый метод.
  4. На территории Российской Федерации и Китайской Народной Республики разработаны внутренние стандарты неразрушающего контроля, которые не используются для выявления дефектов труб обсадных колонн, но используются в других промышленных областях.
  5. В действующих внутренних стандартах и вновь принятых можно встретить ссылки на отмененные или устаревшие (существуют заменяющие) версии международных и внутренних стандартов.
  6. Радиографический метод неразрушающего контроля применяется только для дефектоскопии сварных швов труб обсадных колонн.

XU Jin-long, CAO Biao, HONG Wu-xing, LU Shan-sheng, FENG Jun-han, HUA Bin, YANG Shu-jie Внутренние и международные стандарты методов неразрушающего контроля обсадных колонн / «Методы неразрушающего контроля» 2014 год, Vol 36, № 10, стр. 72-77

Тэги: вихретоковый контроль, капиллярная дефектоскопия, контроль проникающими веществами, магнитный контроль, магнитопорошковый контроль, метод рассеяния магнитного потока, неразрушающий контроль, неразрушающий контроль обсадных труб, обсадная труба, радиографический контроль, рентгеновский контроль, ультразвуковой контроль

Сварные соединения являются новообразованиями на любых конструкциях и их дальнейшая безопасная эксплуатация во многом зависит от качества их наложения, а это, в свою очередь, можно выявить только специальной проверкой. Качество сварных швов металлических соединений проверяют, используя для этого различные методики дефектоскопии. Из всего существующего на сегодняшний день разнообразия видов дефектоскопии можно выделить ультразвуковой контроль сварных соединений, который является наиболее доступным и недорогим методом диагностики. Причем УЗК практически не уступает по точности измерений таким видам неразрушающего контроля, как рентгеноскопия, гамма-скопия, радиоскопия и другим.

Методика ультразвукового неразрушающего контроля является далеко не новым видом дефектоскопии и впервые была применена на практике в 1928 году, а с развитием технического прогресса и промышленных технологий стала использоваться во многих сферах деятельности человека.

Весь эффект УЗК основан на том, что акустические ультразвуковые волны при прохождении однородной среды не меняют свою прямолинейную траекторию движения, а вот при разделе сред, имеющих различную структуру и обладающих разными величинами удельного акустического сопротивления, происходит их частичное отражение. При этом чем существеннее разница в физических и химических свойствах материалов, тем больше будет звуковое сопротивление в месте раздела сред, тем ощутимее и заметнее эффект при отражении звуковых волн.

К примеру, при образовании сварного шва в структуре металла обычно остается смесь газов, которая не успела выйти во время затвердевания наружу. При этом газообразная среда обладает фактически в пять раз меньшим волновым сопротивлением прохождению ультразвуковых колебаний, чем металлическая кристаллическая решетка, что и позволяет практически полностью отражаться ультразвуковым колебаниям.

Ультразвуковой контроль, либо дефектоскопия сварных соединений являются неразрушающим их целостность методом по поиску внутренних структур, имеющих химические или физические отклонения от заданных норм, которые при недопустимой величине и определяются как механические дефекты сварных швов.

Достоинства УЗК

С помощью методики ультразвукового контроля осуществляется диагностика всех видов сварки, пайки и склейки, что позволяет выявлять такие дефекты соединений, как:

  • воздушные пустоты и поры,
  • расслоения в наплавленном металле шва,
  • околошовные трещины,
  • химически неоднородные вкрапления,
  • шлаковые отложения,
  • неоднородность структуры,
  • искривление геометрических размеров.

Главными преимуществами ультразвуковой дефектоскопии можно назвать возможность проведения контроля:

  • соединений как из однородных, так и из разнородных материалов;
  • структур, состоящих как из металлов, так и неметаллов;
  • без разрушения и без повреждения исследуемых образцов;
  • с высокой мобильностью;
  • с высокой скоростью исследований;
  • при низкой себестоимости;
  • без опасных факторов для персонала в сравнении с рентгено- или радио-дефектоскопией.

Недостатки УЗК

Использование ультразвукового контроля имеет ряд особенностей, а именно - требуется существенная подготовка исследуемых поверхностей для прохождения от пьезоэлектрических преобразователей ультразвуковых волн по структуре металла. Необходимо:

  • создание шероховатостей 5 класса на поверхности сварного соединения с направлением полос перпендикулярно шву;
  • нанесение на исследуемый участок контактной массы (в виде воды, масел) для полного исключения воздушного зазора, а в случае с вертикальной или при сильнонаклоненной поверхности использовать густые клейстеры, неспособные к быстрому стеканию;

Непосредственно к недостаткам этой методики дефектоскопии можно отнести:

  • необходимость в использовании специальных пьезоэлектрических преобразователей, имеющие радиус кривизны подошвы в диапазоне величины +-10% от радиуса исследуемого объекта для диагностики округлых форм конструкцией с диаметром менее 200 мм;
  • существенные сложности при исследовании крупнозернистых структур металлов, к примеру, чугуна или аустенита при толщине более 60 мм, связанного со значительным затуханием и с существенным рассеванием ультразвуковых колебаний;
  • невозможность проведения контроля деталей с малыми и сложными формами;
  • затруднительность в оценке соединений разных видов сталей, что связано с неоднородностью основных металлов и сварного шва;
  • невозможность установления реальных размеров различных типов дефектов из-за их формы, физических свойств и расположения в структуре сварного шва.

Виды ультразвукового контроля швов

Технология проведения ультразвуковой дефектоскопии основывается на способности акустических колебаний высокой частоты, порядка 20 кГц, проходить однородную структуру и частично отражаться от различных препятствий в виде пор, трещин и других неоднородностей. Существует несколько методов получения отражения ультразвукового сигнала, а именно:

  • теневой, который определяет разницу амплитуды между прошедшими и отраженными колебаниями;
  • зеркально-теневой, основанный на определении коэффициента затухания отраженных волн;
  • эхо-зеркальный или тандемный, использующий для своей работы два аппарата;
  • дельта метод, заключающейся в определении энергии отраженных от дефекта колебаний;
  • эхо-импульсный, который основывается на регистрации отраженных ультразвуковых волн.

Наиболее распространенными являются два вида дефектоскопии сварных швов при помощи ультразвука - это теневая и эхо-импульсная методика проведения контроля.

Методика проведения УЗК

Несмотря на существование нескольких методик ультразвуковой дефектоскопии их проведение практически схоже и различается лишь в наборе диагностического оборудования. Так, проведение процедуры дефектоскопии можно описать следующей последовательностью:

  1. Производиться тщательная подготовка исследуемой поверхности путем механического удаления остатков шлака, краски и ржавчины со сварочного шва. Вдобавок очищают полосы по 50 мм с обеих сторон от него.
  2. Место проведения дефектоскопии обильно покрывают жидкой массой в виде воды, минеральных масел или густых специальных клейстеров - это необходимо для возможности беспрепятственного прохождения ультразвуковых волн.
  3. Производиться предварительная настройка прибора на определенную методику, рассчитанную на решение конкретных задач.
  4. Пьезоэлектрический преобразователь УЗК последовательно начинают перемещать по зигзагообразной траектории по сварочному шву.
  5. После получения устойчивого сигнала необходимо периодически поворачивать пьезоэлектрический преобразователь в разные стороны вокруг своей оси так, чтобы получить на экране прибора сигнал с максимальной четкостью изображения.
  6. При обнаружении дефектов их фиксируют и записывают соответствующие координаты.
  7. При необходимости, ультразвуковой контроль сварных швов проводят в один или несколько проходов.
  8. Полученные результаты дефектоскопии заносятся в журнал проверки.