Ржавеет ли железо в воде. Виды коррозии металла и борьба с ней. Механизм протекания коррозионных процессов

Думаете, что ржавчина - это проблема владельцев 15-летних "Жигулей"? Увы, рыжими пятнами покрываются и гарантийные авто, даже если кузов оцинкован. Разбираемся, как правильно ухаживать за металлом и можно ли защитить его от коррозии раз и навсегда.

Что такое кузов? Конструкция из тонкого листового металла, причем разных сплавов и со множеством сварных соединений. И еще не нужно забывать о том, что кузов используется как «минус» для бортовой сети, то есть постоянно проводит ток. Да он просто обязан ржаветь! Попробуем разобраться, что же происходит с кузовом машины и как с этим бороться.

Что такое ржавчина?

Коррозия железа или стали - процесс окисления металла кислородом в присутствии воды. На выходе получается гидратированный оксид железа - рыхлый порошок, который мы все называем ржавчиной.

Разрушения автомобильного кузова относят к классическим примерам электрохимической коррозии. Но вода и воздух - это лишь часть проблемы. Помимо обычных химических процессов важную роль в нем играют гальванические пары, возникающие между электрохимически неоднородными парами поверхностей.

Уже вижу, как на лицах читателей-гуманитариев возникает скучающее выражение. Не пугайтесь термина «гальваническая пара» - мы не на лекции по химии и сложных формул приводить не будем. Эта самая пара в частном случае - всего лишь соединение двух металлов.

Металлы, они почти как люди. Не любят, когда к ним прижимается кто-то чужой. Представьте себя в автобусе. К вам прижался помятый мужчина, вчера отмечавший с друзьями какой-нибудь День монтажника-высотника. Вот это в химии называется недопустимой гальванической парой. Алюминий и медь, никель и серебро, магний и сталь… Это «заклятые враги», которые в тесном электрическом соединении очень быстро «сожрут» друг друга.

Вообще-то, ни один металл долго не выдерживает близкого контакта с чужаком. Сами подумайте: даже если к вам прижалась фигуристая блондинка (или стройная шатенка, по вкусу), то первое время будет приятно… Но не будешь же так стоять всю жизнь. Особенно под дождем. Причем тут дождь? Сейчас все станет понятно.

В автомобиле очень много мест, где образуются гальванические пары. Не недопустимые, а «обычные». Точки сварки, кузовные панели из разного металла, различные крепежные элементы и агрегаты, даже разные точки одной пластины с разной механической обработкой поверхности. Между ними всеми постоянно есть разность потенциалов, а значит, в присутствии электролита будет и коррозия.

Стоп, а что такое электролит? Пытливый автомобилист вспомнит, что это некая едкая жидкость, которую заливают в аккумуляторы. И будет прав лишь отчасти. Электролит - это вообще любая субстанция, проводящая ток. В аккумулятор заливают слабый раствор кислоты, но не обязательно поливать машину кислотой, чтобы ускорить коррозию. С функциями электролита прекрасно справляется обычная вода. В чистом (дистиллированном) виде она электролитом не является, но в природе чистой воды не встречается…

Таким образом, в каждой образовавшейся гальванической паре под воздействием воды начинается разрушение металла на стороне анода - положительно заряженной стороны. Как победить этот процесс? Запретить металлам корродировать друг от друга мы не можем, но зато можем исключить из этой системы электролит. Без него «допустимые» гальванические пары могут существовать долго. Дольше, чем служит автомобиль.


Как с ржавчиной борются производители?

Самый простой способ защиты - покрыть поверхность металла пленкой, через которую электролит не проникнет. А если еще и металл будет хорошим, с низким содержанием примесей, способствующим коррозии (например серы), то результат получится вполне достойным.

Но не воспринимайте слова буквально. Пленка - это необязательно полиэтилен. Самый распространенный вид защитной пленки - краска и грунт. Также ее можно создать из фосфатов металла, обработав поверхность фосфатирующим раствором. Входящие в его состав фосфоросодержащие кислоты окислят верхний слой металла, создав очень прочную и тонкую пленку.

Прикрыв фосфатную пленку слоями грунта и краски можно защитить кузов машины на долгие годы, именно по такому «рецепту» готовили кузова на протяжении десятков лет, и, как видите, довольно успешно - многие машины производства пятидесятых-шестидесятых годов смогли сохраниться до наших времен.

Но далеко не все, ведь со временем краска склонна к растрескиванию. Сначала не выдерживают внешние слои, потом трещины добираются до металла и фосфатной пленки. А при авариях и последующем ремонте покрытия часто наносят, не соблюдая абсолютной чистоты поверхности, оставляя на ней маленькие точки коррозии, которые всегда содержат в себе немного влаги. И под пленкой краски начинает появляться новый очаг разрушения.


Можно улучшать качество покрытия, применять все более эластичные краски, слой которых может быть чуть надежнее. Можно покрыть пластиковой пленкой. Но есть лучшая технология. Покрытие стали тонким слоем металла, имеющего более стойкую оксидную пленку, использовалось давно. Так называемая белая жесть - листовая сталь, покрытая тонким слоем олова, знакома всем, кто хоть раз в жизни видел консервную банку.

Олово для покрытия кузовов машин уже давно не применяют, хотя байки про луженые кузова ходят. Это отголосок технологии выправления брака при штамповке горячими припоями, когда часть поверхности вручную покрывали толстым слоем олова, и иногда самые сложные и важные части кузова машины и правда оказывались неплохо защищены.

Современные покрытия для предотвращения коррозии наносятся в заводских условиях до штамповки кузовных панелей, и в качестве «спасателей» используется цинк или алюминий. Оба этих металла, помимо наличия прочной оксидной пленки, обладают еще одним ценным качеством - меньшей электроотрицательностью. В уже упомянутой гальванической паре, которая образуется после разрушения внешней пленки краски, они, а не сталь будут играть роль анода, и, пока на панели остается немного алюминия или цинка, разрушаться будут именно они. Этим их свойством можно воспользоваться иначе, просто добавив немного порошка таких металлов в грунт, которым покрывают металл, что даст кузовной панели дополнительный шанс на долгую жизнь.


В некоторых отраслях промышленности, когда стоит задача защитить металл, применяют и другие технологии. Серьезные металлоконструкции могут быть оборудованы и специальными пластинами-протекторами из алюминия и цинка, которые можно менять со временем, и даже системами электрохимической защиты. С помощью источника напряжения такая система переносит анод на какие-то части конструкции, не являющиеся несущими. На автомобилях подобные вещи не встречаются.

Многослойный бутерброд, состоящий из слоя фосфатов на поверхности стали или цинка, слоя цинка или алюминия, антикоррозийного грунта с цинком и нескольких слоев краски и лака, даже в очень агрессивной внешней среде вроде обычного городского воздуха с влагой, грязью и солью позволяет сохранить кузовные панели на десяток-другой лет.

В местах, где слой краски легко повреждается (например на днище) используют толстые слои герметиков и мастики, которые дополнительно защищают поверхность краски. Мы привыкли называть это «антикором». Дополнительно во внутренние полости закачивают составы на основе парафина и масел, их задача вытеснять влагу с поверхностей, тем самым еще улучшая защиту.

Ни один из способов по одиночке не дает стопроцентной защиты, но все вместе они позволяют производителям давать восьми-десятилетнюю гарантию на отсутствие сквозной коррозии кузова. Однако нужно помнить, что коррозия подобна смерти. Ее приход можно замедлить или отложить, но нельзя исключить совсем. В общем, что мы говорим ржавчине? Правильно: «Не сегодня». Или, перефразируя современного классика, «не в этом году».

  • Держите кузов машины чистым. Грязь вбирает влагу, которая таким образом сохраняется на поверхности и долго выполняет свою разрушительную функцию, потихоньку проникая через микротрещины к железу.
  • Своевременно восстанавливайте повреждения ЛКП, даже если кузов оцинкованный. Ведь то, что «голый» металл не ржавеет, является следствием постоянного «расхода» металлов-защитников, а их на поверхности отнюдь не килограммы.
  • Пользуйтесь услугами квалифицированных кузовных сервисов, ведь правильное восстановление поверхности требует очень аккуратной и чистой работы, с полным пониманием происходящих процессов. А предложения просто закрасить всё слоем краски потолще обязательно приведут вас в кузовной цех еще раз, причем с куда более серьезными повреждениями металла.
  • <a href=»http://polldaddy.com/poll/8389175/»>Приходилось ли бороться с ржавчиной на кузове?</a>


    Понятие прочности часто связывают с металлами. «Прочный, как сталь», - каждый из нас слышал эту фразу не один раз. На самом деле под химическим воздействием внешней среды металлы могут окисляться и разрушаться.

    Термин «коррозия» произошёл от латинского "corrodere" – разъедать. Но коррозии подвержены не только металлы. Пластмассы, полимеры, дерево и даже камни также подвержены коррозии.

    Коррозия – это результат химического воздействия окружающей среды. В результате коррозии металлы разрушаются самопроизвольно. Конечно, разрушаться металлы могут и под влиянием физического воздействия. Такие процессы называют износом, старением, эрозией.

    Несмотря на то, что в промышленности и в быту широко используются полимеры, керамика, стекло, роль металлов в жизнедеятельности человека продолжает оставаться очень важной.

    С коррозией металлов мы сталкиваемся очень часто. Ржавое железо – результат коррозии. Нужно сказать, что многие металлы могут подвергаться коррозии. Но ржавеет только железо.

    Что же происходит с металлами во время коррозии с точки зрения химии?

    Химическая коррозия


    Поверхностный слой металла взаимодействует с кислородом воздуха. В результате образуется оксидная плёнка. На поверхностях разных металлов образуются плёнки разной прочности. Так, алюминий и цинк образуют при взаимодействии с кислородом прочную плёнку, которая препятствует дальнейшей коррозии этих металлов. Защитная плёнка алюминия – оксид алюминия Al 2 O 3. Через неё не могут проникать ни кислород, ни вода. Например, в алюминиевом чайнике кипящая вода не действует на металл.

    Но некоторые металлы и их соединения образуют рыхлые плёнки. Если отрезать кусочек металлического натрия, то можно увидеть, как на его поверхности появится плёнка, имеющая трещины. Такая плёнка свободно пропустит к поверхности кислород воздуха, пары воды и другие вещества. Коррозия натрия будет продолжаться.

    Химическая коррозия – это химическое взаимодействие металла и внешней среды, в результате которой происходит реакция окисления металла и восстановления коррозионной среды.

    Но во внешней среде содержатся не только кислород и пары воды. В воздухе встречаются оксиды азота, серы, углерода, а воде могут быть соли и растворённые газы. И процесс коррозии – довольно сложный процесс. Разные металлы корродируют по-разному. Например, бронза покрывается сульфатом меди (CuOH) 2 SO 4 , который похож на зелёную паутину.

    Коррозия, которая происходит под воздействием электрического тока, не является химической. Её называют электрохимической.

    Почему железо ржавеет


    Почему же всё-таки железо ржавеет?

    В процессе коррозии металл окисляется и превращается в оксид.

    Упрощённое уравнение коррозии железа выглядит так:

    4Fe + 3O 2 + 2H 2 О = 2Fe 2 O 3 ·H 2 О

    2Fe 2 O 3 ·H 2 О - гидратированный оксид железа, или гидроксид железа. Это и есть ржавчина.

    Как видно из уравнения реакции, ржавчина образуется на поверхности железа, если оно взаимодействует с кислородом в воде или во влажном воздухе. В сухом месте железо не ржавеет. Поверхность ржавчины не защищает железо от дальнейшего воздействия среды, поэтому в конце концов железо полностью превратится в ржавчину. Ржавчиной называют коррозию железа и его сплавов.

    Химическая коррозия бывает газовая и коррозия в жидкостях-неэлектролитах.

    Виды химических коррозий

    Газовой коррозией называют процесс разрушения поверхности металла под воздействием газов при высокой температуре. Больше всего известна коррозия при воздействии кислорода на металл.

    Химическая коррозия металлов и их соединений может происходить в жидкостях-неэлектролитах. Жидкости-неэлектролиты - фенол, бензол, спирты, керосин, нефть, бензин, хлороформ, расплавленная сера, жидкий бром, и другие. Такие жидкости не проводят электрический ток. В чистом виде они не содержат примесей и не реагируют с металлами. Но если в них попадают примеси, то металлы в таких жидкостях начинают подвергаться химической коррозии.

    Чтобы защитить металлические конструкции от химической коррозии, на поверхность наносят покрытия, которые обеспечат защиту от воздействия коррозионной среды.

    Коррозия металлов, как известно, приносит много бед. Уж не вам ли, уважаемые автовладельцы, объяснять, чем она грозит: дай ей волю, так от машины одни покрышки останутся. Поэтому, чем раньше начнется борьба с этим бедствием, тем дольше проживет автомобильный кузов.

    Чтобы быть успешными в борьбе с коррозией, необходимо выяснить, что же это за «зверь» и понять причины ее возникновения.

    Сегодня вы узнаете

    Есть ли надежда?

    Ущерб, наносимый человечеству коррозией, колоссален. По разным данным коррозия «съедает» от 10 до 25% мировой добычи железа. Превращаясь в бурый порошок, оно безвозвратно рассеивается по белому свету, в результате чего не только мы, но и наши потомки остаемся без этого ценнейшего конструкционного материала.

    Но беда не только в том, что теряется металл как таковой, нет — разрушаются мосты, машины, крыши, памятники архитектуры. Коррозия не щадит ничего.

    Неизлечимо больна та же Эйфелева башня — символ Парижа. Изготовленная из обычной стали, она неизбежно ржавеет и разрушается. Башню приходится красить каждые 7 лет, отчего ее масса каждый раз увеличивается на 60-70 тонн.

    К сожалению, полностью предотвратить коррозию металлов невозможно. Ну, разве что полностью изолировать металл от окружающей среды, например поместить в вакуум. 🙂 Но какой прок от таких «консервированных» деталей? Металл должен «работать». Поэтому единственным способом защиты от коррозии является поиск путей ее замедления.

    В незапамятные времена для этого применяли жир, масла, позднее начали покрывать железо другими металлами. Прежде всего, легкоплавким оловом. В трудах древнегреческого историка Геродота (V в. до н.э.) и римского ученого Плиния-старшего уже есть упоминания о применении олова для защиты железа от коррозии.

    Интересный случай произошел в 1965 году на Международном симпозиуме по борьбе с коррозией. Некий индийский ученый рассказал об обществе по борьбе с коррозией, которое существует около 1600 лет и членом которого он является. Так вот, полторы тысячи лет назад это общество принимало участие в постройке храмов Солнца на побережье у Конарака. И несмотря на то, что эти храмы некоторое время были затоплены морем, железные балки прекрасно сохранились. Так что и в те далекие времена люди знали толк в борьбе с коррозией. Значит, не все так безнадежно.

    Что такое коррозия?

    Слово «коррозия» происходит от латинского «corrodo – грызу». Встречаются ссылки и на позднелатинское «corrosio – разъедание». Но так или иначе:

    Коррозия – это процесс разрушения металла в результате химического и электрохимического взаимодействия с окружающей средой.

    Хотя коррозию чаще всего связывают с металлами, ей также подвергаются бетон, камень, керамика, дерево, пластмассы. Применительно к полимерным материалам, правда, чаще используется термин деструкция или старение.

    Коррозия и ржавчина — не одно и то же

    В определении коррозии абзацем выше не зря выделено слово «процесс». Дело в том, коррозию частенько отождествляют с термином «ржавчина». Однако это не синонимы. Коррозия — это именно процесс, в то время как ржавчина — один из результатов этого процесса.

    Также стоит отметить, что ржавчина — продукт коррозии исключительно железа и его сплавов (таких как сталь или чугун). Поэтому, когда говорим «ржавеет сталь», мы подразумеваем, что ржавеет железо в ее составе.

    Если ржавчина относится только к железу, значит другие металлы не ржавеют? Не ржавеют, но это не значит, что они не корродируют. Просто продукты коррозии у них другие.

    Например, медь, корродируя, покрывается красивым по цвету зеленоватым налетом (патиной). Серебро на воздухе тускнеет — это на его поверхности образуется налет сульфида, чья тонкая пленка придает металлу характерную розоватую окраску.

    Патина — продукт коррозии меди и ее сплавов

    Механизм протекания коррозионных процессов

    Разнообразие условий и сред, в которых протекают коррозионные процессы, очень широко, поэтому сложно дать единую и всеобъемлющую классификацию встречающихся случаев коррозии. Но не смотря на это, все коррозионные процессы имеют не только общий результат — разрушение металла, но и единую химическую сущность — окисление.

    Упрощенно окисление можно назвать процессом обмена веществ электронами. Когда одно вещество окисляется (отдает электроны), другое, наоборот, восстанавливается (получает электроны).

    Например, в реакции…

    … атом цинка теряет два электрона (окисляется), а молекула хлора присоединяет их (восстанавливается).

    Частицы, которые отдают электроны и окисляются, называются восстановителями , а частицы, которые принимают электроны и восстанавливаются, называются окислителями . Два этих процесса (окисление и восстановление) взаимосвязаны и всегда протекают одновременно.

    Такие вот реакции, которые в химии называются окислительно-восстановительными, лежат в основе любого коррозионного процесса.

    Естественно, склонность к окислению у разных металлов неодинакова. Чтобы понять, у каких она больше, а у каких меньше, вспомним школьный курс химии. Было там такое понятие как электрохимический ряд напряжений (активности) металлов, в котором все металлы расположены слева направо в порядке повышения «благородности».

    Так вот, металлы, расположенные в ряду левее, более склонны к отдаче электронов (а значит и к окислению), чем металлы, стоящие правее. Например, железо (Fe) больше подвержено окислению, чем более благородная медь (Cu). Отдельные металлы (например, золото), могут отдавать электроны только при определенных экстремальных условиях.

    К ряду активности вернемся немного позднее, а сейчас поговорим об основных видах коррозии.

    Виды коррозии

    Как уже говорилось, критериев классификация коррозионных процессов существует множество. Так, различают коррозию по виду распространения (сплошная, местная), по типу коррозионной среды (газовая, атмосферная, жидкостная, почвенная), по характеру механических воздействий (коррозионное растрескивание, явление Фреттинга, кавитационная коррозия) и так далее.

    Но основным способом классификации коррозии, позволяющим наиболее полно объяснить все тонкости этого коварного процесса, является классификация по механизму протекания.

    По этому критерию различают два вида коррозии:

    • химическую
    • электрохимическую

    Химическая коррозия

    Химическая коррозия отличается от электрохимической тем, что протекает в средах, не проводящих электрический ток. Поэтому при такой коррозии разрушение металла не сопровождается возникновением электрического тока в системе. Это обычное окислительно-восстановительное взаимодействие металла с окружающей средой.

    Наиболее типичным примером химической коррозии является газовая коррозия. Газовую коррозию еще называют высокотемпературной, поскольку обычно она протекает при повышенных температурах, когда возможность конденсации влаги на поверхности металла полностью исключена. К такому виду коррозии можно отнести, например, коррозию элементов электронагревателей или сопел ракетных двигателей.

    Скорость химической коррозии зависит от температуры — при ее повышении коррозия ускоряется. Из-за этого, например, в процессе производства металлического проката, во все стороны от раскаленной массы разлетаются огненные брызги. Это с поверхности металла скалываются частички окалины.

    Окалина — типичный продукт химической коррозии, — оксид, возникающий в результате взаимодействия раскаленного металла с кислородом воздуха.

    Помимо кислорода и другие газы могут обладать сильными агрессивными свойствами по отношению к металлам. К таким газам относятся диоксид серы, фтор, хлор, сероводород. Так, например, алюминий и его сплавы, а также стали с высоким содержанием хрома (нержавеющие стали) устойчивы в атмосфере, которая содержит в качестве основного агрессивного агента кислород. Но картина кардинально меняется, если в атмосфере присутствует хлор.

    В документации к некоторым антикоррозионным препаратам химическую коррозию иногда называют «сухой», а электрохимическую — «мокрой». Однако химическая коррозия может протекать и в жидкостях. Только в отличие от электрохимической коррозии эти жидкости — неэлектролиты (т.е. не проводящие электрический ток, например спирт, бензол, бензин, керосин).

    Примером такой коррозии является коррозия железных деталей двигателя автомобиля. Присутствующая в бензине в качестве примесей сера взаимодействует с поверхностью детали, образуя сульфид железа. Сульфид железа очень хрупок и легко отслаивается, освобождая свежую поверхность для дальнейшего взаимодействия с серой. И так, слой за слоем, деталь постепенно разрушается.

    Электрохимическая коррозия

    Если химическая коррозия представляет собой не что иное, как простое окисление металла, то электрохимическая — это разрушение за счет гальванических процессов.

    В отличие от химической, электрохимическая коррозия протекает в средах с хорошей электропроводностью и сопровождается возникновением тока. Для «запуска» электрохимической коррозии необходимы два условия: гальваническая пара и электролит .

    В роли электролита выступает влага на поверхности металла (конденсат, дождевая вода и т.д.). Что такое гальваническая пара? Чтобы понять это, вернемся к ряду активности металлов.

    Смотрим. Cлева расположены более активные металлы, справа — менее активные.

    Если в контакт вступают два металла с различной активностью, они образуют гальваническую пару, и в присутствии электролита между ними возникает поток электронов, перетекающих от анодных участков к катодным. При этом более активный металл, являющийся анодом гальванопары, начинает корродировать, в то время как менее активный коррозии не подвергается.

    Схема гальванического элемента

    Для наглядности рассмотрим несколько простых примеров.

    Допустим, стальной болт закреплен медной гайкой. Что будет корродировать, железо или медь? Смотрим в ряд активности. Железо более активно (стоит левее), а значит именно оно будет разрушаться в месте соединения.

    Стальной болт — медная гайка (корродирует сталь)

    А если гайка алюминиевая? Снова смотрим в ряд активности. Здесь картина меняется: уже алюминий (Al), как более активный металл, будет терять электроны и разрушаться.

    Таким образом, контакт более активного «левого» металла с менее активным «правым» усиливает коррозию первого.

    В качестве примера электрохимической коррозии можно привести случаи разрушения и затопления кораблей, железная обшивка которых была скреплена медными заклепками. Также примечателен случай, который произошел в декабре 1967 года с норвежским рудовозом «Анатина», следовавшим из Кипра в Осаку. В Тихом океане на судно налетел тайфун и трюмы заполнились соленой водой, в результате чего возникла большая гальваническая пара: медный концентрат + стальной корпус судна. Через некоторое время стальной корпус судна начал размягчаться и оно вскоре подало сигнал бедствия. К счастью, экипаж был спасен подоспевшим немецким судном, а сама «Анатина» кое-как добралась до порта.

    Олово и цинк. «Опасные» и «безопасные покрытия

    Возьмем еще пример. Допустим, кузовная панель покрыта оловом. Олово — очень стойкий к коррозии металл, кроме того, оно создает пассивный защитный слой, ограждая железо от взаимодействия с внешней средой. Значит, железо под слоем олова находится в целости и сохранности? Да, но только до тех пор, пока слой олова не получит повреждение.

    А коль уж такое случается, между оловом и железом тут же возникает гальваническая пара, и железо, являющееся более активным металлом, под воздействием гальванического тока начнет корродировать.

    Кстати, в народе до сих пор ходят легенды о якобы «вечных» луженых кузовах «Победы». Корни этой легенды таковы: ремонтируя аварийные машины, мастера использовали паяльные лампы для нагрева. И вдруг, ни с того ни с сего, из-под пламени горелки начинает «рекой» литься олово! Отсюда и пошла молва, что кузов «Победы» был полностью облужен.

    На самом деле все гораздо прозаичнее. Штамповая оснастка тех лет была несовершенной, поэтому поверхности деталей получались неровными. Вдобавок тогдашние стали не годились для глубокой вытяжки, и образование морщин при штамповке стало обычным делом. Сваренный, но еще не окрашенный кузов приходилось долго готовить. Выпуклости сглаживали наждачными кругами, а вмятины заполняли оловяным припоем, особенно много которого было вблизи рамки ветрового стекла. Только и всего.

    Ну, а так ли «вечен» луженый кузов, вы уже знаете: он вечен до первого хорошего удара острым камешком. А их на наших дорогах более чем достаточно.

    А вот с цинком картина совсем иная. Здесь, по сути, мы бьем электрохимическую коррозию ее же оружием. Защищающий металл (цинк) в ряду напряжений стоит левее железа. А значит при повреждении будет разрушаться уже не сталь, а цинк. И только после того, как прокорродирует весь цинк, начнет разрушаться железо. Но, к счастью, корродирует он очень и очень медленно, сохраняя сталь на долгие годы.

    а) Коррозия луженой стали: при повреждении покрытия разрушается сталь. б) Коррозия оцинкованной стали: при повреждении покрытия разрушается цинк, защищая от коррозии сталь.

    Покрытия, выполненные из более активных металлов называются «безопасными », а из менее активных - «опасными ». Безопасные покрытия, в частности оцинковка, давно и успешно применяются как способ защиты от коррозии автомобильных кузовов.

    Почему именно цинк? Ведь помимо цинка в ряду активности относительно железа более активными являются еще несколько элементов. Здесь подвох вот в чем: чем дальше в ряду активности находятся друг от друга два металла, тем быстрее разрушение более активного (менее благородного) . А это, соответственно, сокращает долговечность антикоррозионной защиты. Так что для автомобильных кузовов, где помимо хорошей защиты металла важно достичь и продолжительного срока действия этой защиты, оцинковка подходит как нельзя лучше. Тем более, что цинк доступен и недорог.

    Кстати, а что будет, если покрыть кузов, например, золотом? Во-первых, будет ох как дорого! 🙂 Но даже если золото стало бы самым дешевым металлом, такого делать нельзя, поскольку оно окажет нашей «железке» плохую услугу.

    Золото ведь стоит очень далеко от железа в ряду активности (дальше всего), и при малейшей царапине железо вскоре превратится в груду ржавчины, покрытую золотой пленкой.

    Автомобильный кузов подвергается воздействию как химической, так электрохимической коррозии. Но главная роль все же отводится электрохимическим процессам.

    Ведь, чего греха таить, гальванических пар в автомобильном кузове воз и маленькая тележка: это и сварные швы, и контакты разнородных металлов, и посторонние включения в листовом прокате. Не хватает только электролита, чтобы «включить» эти гальванические элементы.

    А электролит тоже найти легко — хотя бы влага, содержащаяся в атмосфере.

    Кроме того, в реальных условиях эксплуатации оба вида коррозии усиливаются множеством других факторов. Поговорим о главных из них поподробнее.

    Факторы, влияющие на коррозию автомобильного кузова

    Металл: химический состав и структура

    Конечно, если бы автомобильные кузова изготавливались из технически чистого железа, их коррозионная стойкость была бы безупречной. Но к сожалению, а может быть и к счастью, это невозможно. Во-первых, такое железо для автомобиля слишком дорого, во-вторых (что важнее) — недостаточно прочно.

    Впрочем, не будем о высоких идеалах, а вернемся к тому, что имеем. Возьмем, к примеру, сталь марки 08КП, широко применяемую в России для штамповки кузовных элементов. При изучении под микроскопом эта сталь представляет собой следующее: мелкие зерна чистого железа перемешаны с зернами карбида железа и другими включениями.

    Как вы уже догадались, подобная структура порождает множество микрогальванических элементов, и как только в системе появится электролит, коррозия потихоньку начнет свою разрушительную деятельность.

    Интересно, что процесс коррозии железа ускоряется под действием серосодержащих примесей. Обычно она попадает в железо из каменного угля при доменной выплавке из руд. Кстати, в далеком прошлом для этой цели использовался не каменный, а древесный уголь, практически не содержащий серы.

    В том числе и по этой причине некоторые металлические предметы древности за свою многовековую историю практически не пострадали от коррозии. Взгляните, к примеру, на эту железную колонну, которая находится во дворе минарета Кутуб-Минар в Дели.

    Она стоит уже 1600 (!) лет, и хоть бы что. Наряду с низкой влажностью воздуха в Дели, одной из причин такой поразительной коррозионной стойкости индийского железа является, как раз-таки, низкое содержание в металле серы.

    Так что в рассуждениях на манер «раньше металл был чище и кузов долго не ржавел», все-таки есть доля правды, и немалая.

    Кстати, почему же тогда не ржавеют нержавеющие стали? А потому, что хром и никель, используемые в качестве легирующих компонентов этих сталей, стоят в электрохимическом ряду напряжений рядом с железом. Кроме того, при контакте с агрессивной средой они образуют на поверхности прочную оксидную пленку, предохраняющую сталь от дальнейшего корродирования.

    Хромоникелевая сталь — наиболее типичная нержавейка, но кроме нее есть и другие марки нержавеющих сталей. Например, легкие нержавеющие сплавы могут включать алюминий или титан. Если вы были во Всероссийском выставочном центре, вы наверняка видели перед входом обелиск «Покорителям космоса». Он облицован пластинками из титанового сплава и на его блестящей поверхности нет ни единого пятнышка ржавчины.

    Заводские кузовные технологии

    Толщина листовой стали, из которой изготавливаются кузовные детали современного легкового автомобиля, составляет, как правило, менее 1 мм. А в некоторых местах кузова эта толщина — и того меньше.

    Особенностью процесса штамповки кузовных панелей, да и вообще, любой пластической деформации металла, является возникновение в ходе деформации нежелательных остаточных напряжений. Эти напряжения незначительны, если шпамповочное оборудование не изношено, и скорости деформирования настроены правильно.

    В противном случае в кузовную панель закладывается этакая «часовая бомба»: порядок расположения атомов в кристаллических зернах меняется, поэтому металл в состоянии механического напряжения корродирует интенсивнее, чем в нормальном состоянии. И, что характерно, разрушение металла происходит именно на деформированных участках (изгибах, отверстиях), играющих роль анода.

    Кроме того, при сварке и сборке кузова на заводе в нем образуется множество щелей, нахлестов и полостей, в которых скапливается грязь и влага. Не говоря уже о сварных швах, образующих с основным металлом все те же гальванические пары.

    Влияние окружающей среды при эксплуатации

    Среда, в которой эксплуатируются металлические конструкции, в том числе и автомобили, с каждым годом становится все более агрессивной. В последние десятилетия в атмосфере повысилось содержание сернистого газа, оксидов азота и углерода. А значит, автомобили омываются уже не просто водичкой, а кислотными дождями.

    Коль уж зашла речь о кислотных дождях, вернемся еще раз к электрохимическому ряду напряжений. Наблюдательный читатель подметил, что в него включен также и водород. Резонный вопрос: зачем? А вот зачем: его положение показывает, какие металлы вытесняют водород из растворов кислот, а какие — нет. Например, железо расположено левее водорода, а значит вытесняет его из растворов кислот, в то время как медь, стоящая правее, на подобный подвиг уже не способна.

    Отсюда следует, что кислотные дожди для железа опасны, а для чистой меди — нет. А вот о бронзе и других сплавах на основе меди этого сказать нельзя: они содержат алюминий, олово и другие металлы, находящиеся в ряду левее водорода.

    Замечено и доказано, что в условиях большого города кузова живут меньше. В этой связи показательны данные Шведского института коррозии (ШИК), установившего, что:

    • в сельской местности Швеции скорость разрушения стали составляет 8 мкм в год, цинка — 0,8 мкм в год;
    • для города эти цифры составляют 30 и 5 мкм в год соответственно.

    Немаловажны и климатические условия, в которых эксплуатируется автомобиль. Так, в условиях морского климата коррозия активизируется примерно в два раза.

    Влажность и температура

    Насколько велико влияние влажности на коррозию мы можем понять на примере ранее упомянутой железной колонны в Дели (вспомним сухость воздуха, как одну из причин ее коррозионной стойкости).

    Поговаривают, что один иностранец решил раскрыть тайну этого нержавеющего железа и каким-то образом отколол небольшой кусочек от колонны. Каково же было его удивление, когда еще на корабле по пути из Индии этот кусочек покрылся ржавчиной. Оказывается, на влажном морском воздухе нержавеющее индийское железо оказалось не таким уж и нержавеющим. Кроме того, аналогичную колонну из Конарака, расположенного поблизости моря, коррозия поразила очень сильно.

    Скорость коррозии при относительной влажности до 65% сравнительно невелика, но когда влажность возрастает выше указанного значения — коррозия резко ускоряется, поскольку при такой влажности на металлической поверхности образуется слой влаги. И чем дольше поверхность остается влажной, тем быстрее распространяется коррозия.

    Вот почему основные очаги коррозии всегда обнаруживаются в скрытых полостях кузова: cохнут-то они гораздо медленнее открытых частей. Как результат — в них образуются застойные зоны, — настоящий рай для коррозии.

    Кстати, применение химических реагентов для борьбы с гололедом коррозии тоже на руку. Вперемешку с подтаявшими снегом и льдом антигололедные соли образуют очень сильный электролит, способный проникнуть куда угодно, в том числе и в скрытые полости.

    Что касается температуры, то мы уже знаем, что ее повышение активизирует коррозию. По этой причине вблизи выхлопной системы следов коррозии всегда будет больше.

    Доступ воздуха

    Интересная все-таки вещь эта коррозия. Насколько интересна, настолько же и коварна. К примеру, не удивляйтесь, что блестящий стальной трос, с виду абсолютно не тронутый коррозией, внутри может оказаться проржавевшим. Так происходит из-за неравномерного доступа воздуха: в тех местах, где он затруднен, угроза коррозии больше. В теории коррозии это явление называется дифференциальной аэрацией.

    Принцип дифференциальной аэрации: неравномерный доступ воздуха к разным участкам металлической поверхности приводит к образованию гальванического элемента. При этом участок, интенсивно снабжаемый кислородом, остается невредимым, а участок хуже снабжаемый им, корродирует.

    Яркий пример: капля воды, попавшая на поверхность металла. Участок, находящийся под каплей и потому хуже снабжаемый кислородом, играет роль анода. Металл на этом участке окисляется, а роль катода выполняют края капли, более доступные влиянию кислорода. В результате на краях капли начинает осаждаться гидроксид железа — продукт взаимодействия железа, кислорода и влаги.

    Кстати, гидроксид железа (Fe 2 O 3 ·nH 2 O) и является тем, что мы называем ржавчиной. Поверхность ржавчины, в отличие от патины на медной поверхности или оксидной пленки алюминия, не защищает железо от дальнейшего корродирования. Изначально ржавчина имеет структуру геля, но затем постепенно происходит ее кристаллизация.

    Кристаллизация начинается внутри слоя ржавчины, при этом внешняя оболочка геля, который в сухом состоянии очень рыхлый и хрупкий, отслаивается, и воздействию подвергается следующий слой железа. И так до тех пор, пока все железо не будет уничтожено или в системе не закончится весь кислород с водой.

    Возвращаясь к принципу дифференциальной аэрации, можно представить, сколько существует возможностей для развития коррозии в скрытых, плохо проветриваемых участках кузова.

    Ржавеют… все!

    Как говорится, статистика знает все. Ранее мы упоминали о таком известном центре борьбы с коррозией, как Шведский институт коррозии (ШИК) — одной из наиболее авторитетных организаций в данной области.

    Раз в несколько лет ученые института проводят интересное исследование: берут кузова хорошо потрудившихся автомобилей, вырезают из них наиболее полюбившиеся коррозии «фрагменты» (участки порогов, колесных арок, кромок дверей и т.д.) и оценивают степень их коррозионного поражения.

    Важно отметить, что среди исследуемых кузовов есть как защищенные (оцинковкой и/или антикором), так и кузова без какой либо дополнительной антикоррозионной защиты (просто окрашенные детали).

    Так вот, ШИК утверждает, что наилучшей защитой автомобильного кузова является лишь сочетание «цинк плюс антикор». А вот все остальные варианты, включая «просто оцинковку» или «просто антикор», по словам ученых — плохи.

    Оцинковка — не панацея

    Сторонники отказа от дополнительной антикоррозионной обработки часто ссылаются на заводскую оцинковку: с ней, мол, никакая коррозия автомобилю не грозит. Но, как показали шведские ученые, это не совсем так.

    Действительно, цинк может служить в качестве самостоятельной защиты, но только на ровных и плавных поверхностях, к тому же не подверженных механическим атакам. А на кромках, краях, стыках, а также местах, регулярно подвергающихся «обстрелу» песком и камнями, оцинковка перед коррозией пасует.

    К тому же, далеко не у всех автомобилей кузова оцинкованы полностью. Чаще всего цинком покрыто лишь несколько панелей.

    Ну и не нужно забывать, что цинк хоть и защищает сталь, но в процессе защиты неизбежно расходуется сам. Поэтому толщина цинкового «щита» со временем будет постепенно снижаться.

    Так что легенды о долгожительстве оцинкованных кузовов правдивы лишь в тех случаях, когда цинк становится частью общего барьера, дополнением к регулярной дополнительной антикоррозионной обработке кузова.

    Пора заканчивать, но на этом тема коррозии далеко не исчерпана. О борьбе с ней мы продолжим говорить в следующих статьях рубрики «Антикоррозионная защита».

    ПЕРВОЕ ИЗ НИХ – МЕТЕОРИТНОЕ, А ВТОРОЕ – АСТЕРОИДНОЕ-ЗЕМНОЕ

    Уникальная железная Кутубская колонна в Индии, которая не ржавеет более тысячи лет!!!
    В Индии, на территории комплекса Кутб-Минар в Дели находится один из самых загадочных в мире предметов – знаменитая Железная колонна. Ее назывют Кутубской колонной, или колонной Махарсули. Её стоило бы отнести к одному из того, что сейчас принято называть «чудеса света», ибо современная наука сам факт ее существования, иначе как чудом объяснить не может. В том виде, в котором она есть, она просто существовать не может!
    На этой колонне имеется санскритское стихотворение, которое говорит о том, что данная колонна поставлена в период правления царя Чандрагупты II из династии Гуптов, царствовавшего между 381 и 414 гг. нашей эры. Хотя это не подтверждает изготовление колонны именно в этот период – не исключено, что сама колонна была изготовлена существенно раньше, а надпись нанесена позднее. На сегодняшний момент Кутубская колонна, пожалуй, один из самых загадочных памятников индийской культуры.
    Изначально Железная колонна увенчивалась изображением мифической птицы Гаруды, посвящалась богу Вишну и находилась в другом месте Индии. Позднее мусульманские завоеватели, не понимая толком с чем имеют дело, перенесли ее во двор мечети Кувват уль-Ислам. Скорее всего, именно тогда с колонны исчезла птица Гаруда и куда делась неизвестно.

    2)
    КУТУБСКАЯ КОЛОННА ИМЕЕТ СЛЕДУЮЩИЕ ХАРАКТЕРИСТИКИ: ВЫПОЛНЕНА ИЗ ЧИСТОГО ЖЕЛЕЗА, МОНОЛИТНА, ТО ЕСТЬ НЕ ИМЕЕТ НИ ОДНОГО СВАРНОГО ИЛИ ЛЮБОГО ДРУГОГО СОЕДИНИТЕЛЬНОГО ШВА, ВЫСОТА – 7,3 МЕТРА, ВЕС – БОЛЕЕ 6,5 ТОНН; ДИАМЕТР У ОСНОВАНИЯ – 42 СМ., ДИАМЕТР У ВЕРХА – 30 СМ.. НО НЕ ЭТО САМОЕ ИНТЕРЕСНОЕ – В МИРЕ
    ЕСТЬ КУДА БОЛЕЕ МАСШТАБНЫЕ РЕЛИГИОЗНЫЕ ИЛИ СИМВОЛИЧЕСКИЕ РЕАЛИЗАЦИИ. ВООБЩЕ, В ТРОПИЧЕСКОМ И ОЧЕНЬ ВЛАЖНОМ КЛИМАТЕ ИНДИИ, ПРЕДМЕТЫ ИЗ ЖЕЛЕЗА РЖАВЕЮТ ОЧЕНЬ БЫСТРО, НО КОРРОЗИЯ ДАННУЮ КОЛОННУ

    СОВЕРШЕННО НЕ ЗАТРОНУЛА – ОНА СТОИТ УЖЕ БОЛЕЕ 1500 ЛЕТ (ЧТО ПОДТВЕРЖДАЕТСЯ ДОКУМЕНТАЛЬНО) И НЕ ИМЕЕТ НИ МАЛЕЙШИХ СЛЕДОВ РЖАВЧИНЫ. НИКАКИХ! КАК БУДТО НАХОДИТСЯ ОНА НЕ ВО ВЛАЖНОЙ АТМОСФЕРЕ, А ЗАПАЯНА В БЕЗВОЗДУШНОЙ КОЛБЕ. (ЭНЦИКЛОПЕДИЯ).

    ПОЧЕМУ РЖАВЕЕТ ЖЕЛЕЗО?

    Если оставить какой-то железный предмет в сыром и влажном месте на несколько дней, он
    покроется ржавчиной, как если бы его покрасили красноватой краской.
    Что такое ржавчина? Почему она образуется на железных и стальных предметах? Ржавчина - это
    окись железа. Она образуется в результате «сгорания» железа при соединении с кислородом,
    растворенным в воде.
    Это значит, что при отсутствии в воздухе влаги и воды вообще отсутствует растворенный в воде
    кислород и ржавчина не образуется.
    Если капля дождя попадает на блестящую железную поверхность, она остается прозрачной в
    течение короткого периода времени. Железо и кислород, находящийся в воде, начинают
    взаимодействовать и образуют окись, то есть ржавчину, внутри капли. Вода становится
    красноватой, и ржавчина плавает в воде в виде мелких частиц. Когда капля испарится, остается
    ржавчина, образуя красноватый слой на поверхности железа.
    Если уж ржавчина появилась, она будет расти и в сухом воздухе. Это происходит потому, что
    пористое пятно ржавчины поглощает влагу, содержащуюся в воздухе, - она притягивает и
    удерживает ее. Вот почему легче предупредить ржавчину, чем остановить ее, когда она появилась.
    Проблема предупреждения ржавчины очень важна, так как изделия из железа и стали должны долго храниться. Иногда их покрывают слоем краски или пластмассы. А что бы ты сделал, чтобы
    предохранить от ржавчины боевые корабли, когда они не используются? Эта проблема решена с
    помощью поглотителей влажности. Такие механизмы заменяют влажный воздух в отсеках на сухой.
    Ржавчина в таких условиях появиться не может! (Энциклопедия).

    Известно, что каждое явление природы, в том числе – ржавеет и не ржавеет, как следствие, основаны на причине.

    Первопричина колебаний и явлений природы, как единая точка зрения на Вселенную, была обнаружена (в том числе) и на таком опыте: падающий на твёрдые кристаллы свет отражается с рассеиванием. При понижении

    3)
    температуры кристаллов рассеивание уменьшается до некоторого предела и, вопреки классическим представлениям, сохраняется при дальнейшем охлаждении. В связи с этим учёные пришли к выводу, что в природе
    существуют ничем не уничтожимые колебания частиц (первичное движение) с некоторой «нулевой» амплитудой А и энергией равной постоянной Планка: h=6,626 10-34, Дж/Т,
    (см. Нулевые колебания, квантовая механика из Википедии–свободной энциклопедии).
    Действия ничем неуничтожимых “нулевых” притягивающих и отталкивающих векторов объёмно колеблющихся тел в едином времени,
    представляют природную первопричину (диффузия, броуновское движение). А следствием, вторичным, являются результаты их всех
    взаимодействий, обладающие (Дао-божественно-генетически-термодинамическим) само организующим строительно-разрушительным ходом: (растянутым во времени) - от рождения „чего-либо“, взросления, старения и распада во всех вселенских масштабах.

    Период полураспада квантово-механической системы (частицы, ядра, атома…) – время Т, в течение которого система распадается с вероятностью;. Если рассматривается ансамбль независимых частиц, то в течение одного периода полураспада Т количество выживших частиц уменьшится в среднем в 2 раза. Например, период полураспада:

    Калия – 39,1 (19) составляет Т=1,28 106 лет;
    урана – 238 (92) Т=4,5 109 лет;
    тория – 232 (90) Т=1,41 1010 лет. (Энциклопедия).

    Планета Земля предположительно образовалась из астероидного пояса. Астероиды, состоящие из элементов таблицы Менделеева и их сочетаний, в виде платформ, щитов различных наименований и размеров, некогда составлявшие вращающийся между Венерой и Марсом пояс, (при сохранении количества движения), сложились, подобно вееру, в дубль планеты – Землю и Луну. Аналогично из своих астероидных поясов образовались все планеты Солнечной системы. Астероидный пояс между Марсом и Юпитером – это не распавшаяся планета Фаэтон, а будущая. При переходе астероидного пояса в гео – селеновые объекты, – его различных наименований платформы, плиты, щиты и т. д., собираясь в кучу, разбивались и дробились, но между ними оставались пустоты. Действие гравитации и времени вытесняло пустоты. А когда наступил период распада, то температура Земли начала повышаться. Ледяные астероиды (а они могли быть, в том числе, и в центре) – превращались в воду. Гравитация, как основа тектоники, вынуждала более плотным телам опускаться к центру Земли, вытесняя менее плотные объекты и воду, изменяя рельеф местности, создавая перепады по высоте. Несолёная вода (источники) в виде атмосферных

    4)
    осадков, рек, морей и океанов размывали выступающие на поверхность астероиды (в том числе соли), из которых образовались осадочные месторождения полезных ископаемых, например: железа, марганца, угля…и
    солёность воды в океанах. Тогда как не размытые астероиды стали представлять коренные месторождения полезных ископаемых, в том числе нефти и газа. (См. www.oskar-laar.at.ua стр. 22-23).
    А теперь остаётся сравнить возрасты нержавеющего метеоритного железа Кутубской колонны с железом земного происхождения.

    Пусть (условно) единицей измерения времени каждого периода Тт (рождения-Тт, взросления-Тт, старения-Тт, распада-Тт), будет период полураспада

    Тория – 232 (90) Тт = 1,41 1010 лет.

    Тогда земное железо будет иметь возраст четыре единицы 4Тт=Тт+Тт+Тт+Тт, а Кутубское железо – всего одну единичку Тт. Ответ лежит на поверхности:

    Кутубское метеоритное железо молодое, обладает иммунитетом, поэтому не ржавеет.

    А земное железо – старое (распадающееся, изменившее свойства), уже утратило иммунитет, поэтому ржавеет.

    Как и полагается первопричина – одна – возраст, а следствия – разные.
    В том-же ключе: усталость металла, аппарат не выдержал нагрузки, появилась трещина и так далее.

    Возможно учёные-дегустаторы будут учитывать „стаж наработки” и возрастные нагрузки для железа.

    Рецензии

    "Планета Земля предположительно образовалась из астероидного пояса" - "предположительно!" вот и вся основа этой работы...
    Объяснить (притянуть за уши) можно все, что угодно... особенно если есть имя в науке... только будет ли это правдой в последнем (или первом...) значении.
    Помнится, Капица не смог объяснить почему чаинки (при размешивании) собираются в центре стакана... вернее объяснил... сложные течения (упал в глазах).
    Есть такие ученые - дарвины (с маленькой буквы и с полным презрением)... они умеют предполагать (ржунимагу)... вот главное, таким не стать... лучше сказать: "Мы этого пока не знаем."

    И расскажите уж, наконец:
    - Что такое огонь?
    Потом можно и в дебри лезть.

    Коррозия металла является широко распространенной причиной, приводящей в негодность различные детали из металла. Коррозией металла (или ржавлением) называют разрушение металла под воздействием физических и химических факторов. К факторам, вызывающим коррозию, относят природные осадки, воду, температуру, воздух, различные щелочи и кислоты и т.д.

    1

    Коррозия металла становится серьезной проблемой при строительстве, в быту и на производствах. Чаще всего конструкторы предусматривают защиту металлических поверхностей от ржавчины, но иногда ржавление происходит на незащищенных поверхностях и на специально обработанных деталях.

    Металлические сплавы лежат в основе жизнедеятельности человека, они окружают его практически везде: в быту, на работе, в процессе отдыха. Не всегда люди замечают металлические вещи и детали, но они постоянно им сопутствуют. Различные сплавы и чистые металлы являются самыми производимыми веществами на нашей планете. Современная промышленность выпускает различные сплавы в 20 раз больше (по массе), чем все остальные материалы. Несмотря на то что металлы считаются одними из наиболее прочных веществ на Земле, они могут разрушаться и терять свои характеристики в результате процессов ржавления. Под воздействием воды, воздуха и других факторов происходит процесс окисления металлов, который и называют коррозией. Несмотря на то что корродировать может не только металл, но и каменные породы, ниже будут рассмотрены процессы, связанные именно с металлами. Здесь стоит обратить внимание на то, что некоторые сплавы или металлы больше подвержены коррозии, чем другие. Это обусловлено скоростью протекания процесса окисления.

    Процесс окисления металлов

    Самое распространенное вещество в сплавах - это железо. Коррозия железа описывается следующим химическим уравнением: 3O 2 +2H 2 O+4Fe=2Fe 2 O 3 . H 2 O. Полученный в результате оксид железа и является той рыжей ржавчиной, портящей предметы. Но рассмотрим виды коррозии:

    1. Водородная коррозия. На металлических поверхностях практически не встречается (хотя теоретически возможна). В связи с этим описываться не будет.
    2. Кислородная коррозия. Аналогична водородной.
    3. Химическая. Реакция происходит из-за воздействия металла с каким-либо фактором (например, воздухом 3O 2 +4Fe=2Fe 2 O 3) и протекает без образования электрохимических процессов. Так, после воздействия кислорода с поверхностью появляется оксидная пленка. На некоторых металлах такая пленка достаточно прочна и не только защищает элемент от разрушительных процессов, но и повышает его прочность (например, алюминий или цинк). На некоторых металлах такая пленка очень быстро отслаивается (разрушается), например, у натрия или калия. А большинство металлов разрушаются достаточно медленно (железо, чугун и т.д.). Так, например, происходит коррозия чугуна. Более часто ржавление происходит при контакте сплава с серой, кислородом, хлором. Из-за химической коррозии ржавеют сопла, арматура и т.д.
    4. Электрохимическая коррозия железа. Данный вид ржавления происходит в средах, которые проводят электричество (проводники). Время разрушения различных материалов при электрохимических реакциях разное. Электрохимические реакции наблюдаются в случаях контакта металлов, которые находятся на расстоянии в ряду напряженности. Например, изделие изготовленное из стали, имеет медные напайки/крепления. При попадании воды на соединения медные части будут катодами, а сталь - анодом (каждая точка имеет свой электрический потенциал). Скорость протекания таких процессов зависит от количества и состава электролита. Для протекания реакций нужно наличие 2 разных металлов и электропроводящей среды. При этом разрушение сплавов прямо пропорционально зависит от силы тока. Чем больше ток, тем быстрее реакция, чем быстрее реакция, тем быстрее разрушение. В некоторых случаях катодами служат примеси сплава.

    Электрохимическая коррозия железа

    Также стоит отметить подвиды, которые бывают при ржавлении (описывать не будем, только перечислим): подземная, атмосферная, газовая, при разных видах погружения, сплошная, контактная, вызываемая трением и т.д. Все подвиды можно отнести к химическому или электрохимическому ржавлению.

    2

    При строительстве часто встречается коррозия арматуры и сварных конструкций. Коррозия часто происходит из-за несоблюдения правил хранения материала или невыполнения работ по обработке прутьев. Коррозия арматуры довольно опасна, поскольку арматуру закладывают для усиления конструкций, и в результате разрушения прутьев возможен обвал. Коррозия сварных швов не менее опасно, чем коррозия арматуры. Это также значительно ослабит шов и может привести к разрыву. Есть достаточно много примеров, когда ржавчина на силовых конструкциях приводит к обрушению помещений.

    Другие часто встречающиеся в быту случаи ржавления - порча бытовых орудий труда (ножей, столовых приборов, инструмента), порча металлоконструкций, порча средств передвижения (как наземных, так и воздушных и водных) и т.д.

    Пожалуй, самые часто встречающиеся ржавые вещи - это ключи, ножи и инструменты. Все эти предметы подвергаются ржавлению из-за того, что трением снимается защитное покрытие, которое оголяет основу.

    Основа подвергается процессам разрушения из-за контактов с агрессивными средами (особенно ножи и инструменты).

    Разрушения из-за контактов с агрессивными средами

    Кстати, разрушения вещей, которые часто используются в быту, можно наблюдать практически повсеместно и регулярно, в то же время некоторые металлические предметы или конструкции могут простоять ржавыми десятилетия и будут исправно выполнять свои функции. Например, ножовка, которой часто пилили бревна и оставили на месяц в сарае, быстро проржавеет и может сломаться в процессе работы, а столб с дорожным знаком может простоять десять, а то и более лет ржавым и не разрушится.

    Поэтому все металлические вещи следует защищать от коррозии. Методов защиты несколько, но все это химия. Выбор такой защиты зависит от типа поверхности и действующего на нее разрушительного фактора.

    Для этого поверхность тщательно очищают от грязи и пыли, для того чтобы исключить возможность непопадания защитного покрытия на поверхность. Затем ее обезжиривают (для некоторых типов сплава или металла и для некоторых защитных покрытий это является необходимым), после чего наносят защитный слой. Наиболее часто защиту обеспечивают лакокрасочные материалы. В зависимости от металла и факторов используются разные лаки, краски и грунты.

    Другой вариант - нанесение тонкого защитного слоя из другого материала. Обычно этот способ практикуется на производстве (например, оцинковка). В итоге потребителю практически ничего не требуется делать после приобретения вещи.

    Нанесение тонкого защитного слоя

    Другой вариант - создание специальных сплавов, которые не окисляются (например, нержавейка), однако они не гарантируют 100% защиты, более того, некоторые вещи из таких материалов окисляются.

    Важными параметрами защитных слоев являются толщина, срок службы и скорость разрушения под активным неблагоприятным воздействием. При нанесении защитного покрытия крайне важно точно вписаться в допустимую толщину слоя. Обычно производители лакокрасочных материалов указывают его на упаковке. Так, если слой будет больше максимально допустимого, то это вызовет перерасход лака (краски), и слой может разрушаться под сильным механическим воздействием, более тонкий слой может стираться и сократить срок защиты основы.

    Правильно выбранный защитный материал и правильно нанесенный на поверхность гарантирует на 80% то, что деталь не будет подвержена коррозии.

    3

    Многие люди в быту не задумываются над тем, как защитить свои вещи ото ржи. И получают проблему в виде испорченного предмета. Как правильно решить эту проблему?

    Удаление ржавчины с детали

    Для того чтобы произвести восстановление вещи или детали от ржавчины, первым делом следует снять весь рыжий налет до чистой поверхности. Он снимается с помощью наждачной бумаги, напильников, сильными реагентами (кислотами или щелочами), но особую славу в этом заслужили напитки типа «Кока-Колы». Для этого вещь погружают полностью в емкость с чудо-жидкостью и оставляют на некоторое время (от нескольких часов до нескольких суток - время зависит от вещи и поврежденной площади).

    Рыжие пятна на стальных изделиях

    Согласно данным ООН, каждая страна в год теряет от 0,5 до 7-8% валового национального продукта из-за коррозии. Парадокс заключается в том, что менее развитые страны теряют меньше, чем развитые. А 30% всех выпускаемых стальных изделий на планете идет на замену проржавевшим. Поэтому настоятельно рекомендуется отнестись к этой проблеме серьезно.