Подача резца. Классификация резцов для токарного станка по металлу — виды, назначение. Основы теории резания металлов

Торцы и уступы обрабатывают подрезными, проходными отогнутыми или проходными упорными резцами. Подрезной резец, рисунок - а) предназначен для обработки наружных торцовых поверхностей. При подрезании торца подача резца осуществляется перпендикулярно оси обрабатываемой детали. Подрезной резец, рисунок - б) позволяет обрабатывать различные торцовые и другие поверхности с продольной и поперечной подачами. Подрезные резцы изготовляют с пластинами из быстрорежущих сталей и твердых сплавов. Главный задний угол α=10-15 градусов, передний угол γ выбирают в зависимости от обрабатываемого материала. Проходным отогнутым резцом, рисунок - в) можно выполнять подрезку торца при поперечной подаче S2 и обтачивание при продольной подаче S1 резца. Проходным упорным резцом, рисунок - г) можно подрезать торцы и обтачивать уступы при продольной подаче S1. Резцы для подрезания торцов должны устанавливаться точно по оси детали, иначе на торце детали остается выступ. При большом диаметре торцовой поверхности припуск снимают с поперечной подачей в несколько проходов. Уступы более 2-3 мм подрезают проходными резцами в несколько приемов. Сначала уступ образуется при продольной подаче S1 резца, а затем подрезается при поперечной подаче S2, рисунок - д).

Режимы резания . При подрезании торцов и уступов поперечная и продольная подачи определяются так же, как и при обтачивании цилиндрических поверхностей. Поперечная подача обычно берется меньше продольной. Для черновой обработки торцов рекомендуются поперечные подачи 0,3-0,7 мм/об при глубине резания 2-5 мм, а для чистовой обработки 0,1-0,3 мм/об при глубине резания 0,7-1 мм. Скорость резания для обработки торцов и уступов обычно на 20% выше, чем при обработке наружных цилиндрических поверхностей, так как время участия резца в процессе резания незначительно и он не успевает нагреться до критической температуры.

Понятие о припуске на обработку. Детали машин, обрабатываемые на металлорежущих станках, изготавливаются из отливок, поковок, кусков прокатанного металла и других заготовок. Деталь получает требуемые форму и размеры после того, как с заготовки будут срезаны все излишки материала или, как говорят припуски, получившиеся при ее изготовлении.

Припуском (общим) называется слой металла, который необходимо удалить с заготовки для получения детали с окончательно отработанном виде.

Некоторые детали обрабатываются последовательно на нескольких станках, на каждом из которых снимается только часть общего припуска. Так, например, детали, диаметральные размеры которых должны быть очень точными, а поверхности иметь весьма малую шероховатость, обрабатывают предварительно на токарных, а окончательно на шлифовальных станках.

Слой металла, снимаемый на токарном станке, называется припуском на токарную обработку . При обработке цилиндрических деталей различают - припуск на сторону и припуск на диаметр. Припуск на диаметр равен удвоенной величине припуска на сторону. Он может определяться как разность диаметров в одном и том же сечении до и после обработки.

Часть металла, снятая (срезанная) с заготовки в процессе ее обработки, называется стружкой .

Клин как основа любого режущего инструмента. Режущие инструменты, применяемые при обработке деталей на станках, в частности токарных, очень разнообразны, но сущность работы их одинакова. Каждый из этих инструментов является клином, устройство и работа которого общеизвестны.

Нож посредством которого мы затачиваем карандаш, в поперечном сечении имеет форму клина. Столярная стамеска также представляет собой клин с острым углом между его боковыми сторонами.

Наиболее употребительный инструмент при обработки детали на токарном станке - это резец. Сечение рабочей части резца также имеет форму клина.

Рис. №1 Клин как основа любого режущего инструмента

Движения резания при точении. На рис.2 схематически показано обтачивание детали 1 резцом 2. Деталь при этом вращается по стрелке υ , а резец перемещается по стрелке s и снимает с детали стружку. Первое из этих движений является главным . Оно характеризуется скоростью резания. Второе движение - движение подачи .

Рис. №2 Движения и элементы резания при точении

Скорость резания. Каждая точка обрабатываемой по поверхности детали (рис.2), например точка А, проходит в единицу времени, например в одну минуту, некоторый путь. Длина этого пути может быть больше или меньше в зависимости от числа оборотов в минуту детали и от ее диаметра и определяет собой скорость резания.

Скорость резания называется длина пути, который проходит в одну минуту точка обрабатываемой поверхности детали относительно режущей кромки резца. Скорость резания измеряется в метрах в минуту и обозначается буквой υ . Для краткости вместо слов "метров в минуту" принять писать м / мин.

Скорость резания при точении находится по формуле

υ = πDn / 1000

где υ - искомая скорость резания в м / мин; π - отношение длины окружности к ее диаметру, равное 3,14; D - диаметр обрабатываемой поверхности детали в мм.; n - число оборотов детали в минуту. Произведение πDn в формуле должно быть разделено на1000, чтобы найденная скорость резания была выражена в метрах. Формула эта читается так: скорость резания равна произведению длины окружности обрабатываемой детали на число оборотов ее в минуту, разделенному на1000.
Подача. Перемещение резца при резании в зависимости от условий работы может происходить быстрее или медленнее и характеризуется, как это отмечено выше, подачей.
Подачей называется величина перемещения резца за один оборот обрабатываемой детали. Подача измеряется в миллиметрах на один оборот детали и обозначается буквой s (мм/об).
Подача называется продольной , если перемещение резца происходит параллельно оси обрабатываемой детали, и поперечной , когда резец перемещается перпендикулярно к этой оси.
Глубина резания. При перемещении резец снимает с детали слой материала, толщина которого характеризуется глубиной резания.
Глубиной резания
называется толщина снимаемого слоя материала, измеренная по перпендикуляру к обработанной поверхности детали. Глубина резания измеряется с миллиметрах и обозначается буквой t . Глубиной резания при наружном обтачивании является половина разности диаметров обрабатываемой детали до и после прохода резца. Таким образом, если диаметр детали до обтачивания был 100мм., а после одного прохода резца стал равен 90мм., то это значит что глубина резания была 5мм.
Срез, его толщина, ширина и площадь. В следствии остаточной деформации стружки, происходящей в процессе ее образования, ширена и особенно толщина ее получаются больше размеров b и a на рис. 2. Длина стружки оказывается меньше соответственного размера обрабатываемого участка поверхности детали. Поэтому площадь ƒ, заштрихованная на рис. 2 и называемая срезом, не отражает поперечного сечения стружки, снимаемой в этом случае.
Срезом называется поперечное сечение слоя металла, снимаемого при данной глубине резания и подаче. Размеры среза характеризуются его толщиной и шириной.
Толщиной среза называется расстояние между крайними точками работающей части режущей кромки резца. Ширина среза измеряется в миллиметрах (мм) и обозначается буквой b . Четырехугольник, заштрихованный на рис. 2, изображает площадь среза.
Площадь среза равна произведению подачи на глубину резания. Площадь среза измеряется в мм² , обозначается буквой ƒ и определяется по формуле ƒ= s t , где ƒ - глубина резания в мм.
Поверхности и плоскости в процессе резания. На обрабатываемой детали при снятии с нее стружки резцом различают поверхности: обрабатываемую, обработанную и поверхность резания (рис. 3).

Рис. 3. Поверхность и плоскость в процессе резания

Обрабатываемой поверхностью называется та поверхность, с которой снимается стружка.
Обработанной поверхностью называется поверхность детали, полученная после снятия стружки.

Поверхностью резания называется поверхность, образуемая на обрабатываемой детали непосредственно режущей кромкой резца.

Для определения углов резца установлены понятия: плоскость резания и основная плоскость.

Плоскость резания называется плоскость, касательная к поверхности резания и проходящая через режущую кромку резца.

Основной поверхностью называется плоскость, параллельная продольной и поперечной подачам. Она совпадает с опорной поверхностью резца.

Части резца и элементы его головки. Резец (рис. 4) состоит из головки, т.е. рабочей части, и тела, служащего для закрепления резца.

Рис. 4. Части резца и элементы его головки.

Поверхностям и другим элементам головки резца присвоены следующие названия.
Передней поверхностью резца называется та поверхность, по которой сходит стружка.
Задними поверхностями резца называются поверхности, обращенные к обрабатываемой детали, причем одна из них называется главной, а другая вспомогательной.
Режущими кромками резца называются линии, образованные пересечением передней и задних поверхностей его. Режущая кромка, выполняющая основную работу резания, называется главной. Другая режущая кромка резца называется вспомогательной.
Из рис. 4 видно, что главной задней поверхностью резца является поверхность, примыкающая к его главной режущей кромке, а вспомогательной - примыкающая к вспомогательной режущей кромке.
Вершиной резца называется место сопряжения главной и вспомогательной кромкой. Вершина резца может быть острой, плоскосрезанной или закругленной.
Углы резца. Главными углами резца являются главный задний угол, передний угол, угол заострения и угол резания. Эти углы измеряются в главной секущей плоскости (рис. 5).
Главная секущая плоскость есть плоскость, перпендикулярная к главной режущей кромке и основной плоскости.
Главным задним углом называется угол между главной задней поверхностью резца и плоскостью резания. Этот угол обозначается греческой буквой α (альфа). Угол заострения называется угол между передней и главной задней поверхностями резца. Этот угол обозначатся греческой буквой β (бета).
Передним углом называется угол между передней поверхностью резца и плоскостью, проведенной через главную режущую кромку перпендикулярно к плоскости резания. Этот угол обозначается буквой γ (гамма).
Угол резания называется между передней поверхностью резца и плоскостью резания. Этот угол обозначается греческой буквой δ(дельта)>

.

Рис. 5. Углы токарного резца.

Кроме перечисленных, различают следующие углы резца: вспомогательный задний угол, главный угол в плане, вспомогательный угол в плане, угол при вершине резца и угол наклона главной режущей кромки.
Вспомогательным задним углом называется угол между вспомогательной задней поверхностью и плоскостью, проходящей через вспомогательную режущую кромку перпендикулярно к основной плоскости. Этот угол измеряется во вспомогательной секущей плоскости, перпендикулярной к вспомогательной режущей кромке, и основной плоскости и обозначается α¹ .
Главным углом в плане называется угол между главной режущей кромкой и направлением подачи. Этот угол обозначается буквой φ (фи).
Вспомогательным углом в плане называется угол между вспомогательной режущей кромкой и направлением подачи. Этот угол обозначается φ ¹ .
Углом при вершине называется угол, образованный пересечением главной и вспомогательной режущих кромок. Этот угол обозначается греческой буквой ε (ипсилон).
Упрощенное изображение углов резца, принятое на практике, указано на рис. 6, а и б (линия АА - плоскость резания). На рис. 6, в показаны углы резца в плане.
Главная режущая кромка резца может составлять различные углы наклона с линией, проведенной через вершину резца параллельно основной плоскости (рис. 7).

Рис. 6. Упрощенное изображение углов токарного резца.

Угол наклона измеряется в плоскости, проходящей через главную режущую кромку перпендикулярно к основной плоскости, и обозначается греческой буквой λ (лямбда). Угол этот считается положительным (рис. 7, а), когда вершина резца является самой низкой точкой режущей кромки; равным нулю (рис. 7, б) - при главной режущей кромке, параллельной основной плоскости, и отрицательным (рис. 7, в) - когда вершина резца является наивысшей точкой режущей кромки.

Рис. 7. Углы наклона главной режущей кромки: положительный (а), равный нулю (б) и отрицательный (в)

Значение углов резца и общие соображения при их выборе. Все перечисленные углы имеют важное значение для процесса резания и к выбору величины их следует подходить очень осторожно.
Чем больше передний угол γ резца, тем легче происходит снятие стружки. Но с увеличением этого угла (рис. 6, а) уменьшается угол заострения резца, а поэтому и прочность его.
Передний угол резца может быть вследствие этого сравнительно большим при обработке мягких материалов и, наоборот, должен быть уменьшен, если обрабатываемый материал тверд. Передний угол может быть и отрицательным (рис. 6, б), что способствует повышению прочности резца.
Из рис. 6, а ясно, что с уменьшением переднего угла резца увеличивается угол резания. Сопоставляя это со сказанным выше о зависимости переднего угла от твердости обрабатываемого материала, можно сказать, что чем тверже обрабатываемый материал, тем больше должен быть угол резания, и наоборот.
Чтобы определить величину угла резания δ, когда известен передний угол резца, достаточно, как это видно из рис. 6, а, вычесть из 90º данную величину переднего угла. Например, если передний угол резца равен 25º , угол резания его составляет 90º - 25º = 65º ; если передний угол составляет - 5º , то угол резания будет равен 90º - (-5º ) = 95º .
Задний угол резца α необходим для того, чтобы между задней поверхностью резца и поверхностью резания обрабатываемой детали не было трения. При слишком малом заднем угле это трение получается настолько значительным, что резец сильно нагревается и становится негодным для дальнейшей работы. При слишком большом заднем угле угол заострения оказывается настолько малым, что резец становится непрочным.
Величина угла заострения β определяется сама собой после того, как выбраны задний и передний углы резца. В самом деле, из рис. 6, а очевидно, что для определения угла заострения данного резца достаточно вычесть из 90º сумму заднего и переднего его углов. Так, например, если резец имеет задний угол равным 8º , а передний 25º , то угол заострения его равен 90º - (8º +25º ) = 90º -33º =57º . Это правило следует помнить, так как им иногда приходится пользоваться при измерении углов резца.
Значение главного угла в плане φ вытекает из сопоставления рис. 8, а и б, на которых схематически показаны условия работы резцов при одинаковых подачах s и глубине резания t , но при разных значениях главного угла в плане.


Рис. 8. Влияние главного угла в плане на процесс резания.

При главном угле в плане, равном 60º , сила P , возникающая в процессе резания, вызывает меньший прогиб обрабатываемой детали, чем аналогичная сила Q при угле в плане 30º . Поэтому резец с углом φ=60º более пригоден для обработки нежестких деталей (относительно небольшого диаметра при большой длине) в сравнении с резцом, имеющим угол φ=30º . С другой стороны, при угле φ=30º длина режущей кромки резца, непосредственно участвующая в его работе, больше соответственной длины при φ=60º . Поэтому резец, изображенный на рис. 8, б, лучше поглощает теплоту, возникающую при образовании стружки и дольше работает от одной заточки до другой.
Значение ушла наклона λ заключается в том, что выбирая положительное или отрицательное значение его, мы можем направлять отходящую стружку в ту или другую сторону, что в некоторых случаях бывает очень полезно. Если угол наклона главной режущей кромки резца положителен, то завивающаяся стружка отходит вправо (рис. 9, а); при угле наклона, равном нулю, стружка отходит в направлении, перпендикулярном главной режущей кромке (рис. 9, б); при отрицательном угле наклона стружка отходит влево (рис. 9, в).

Рис. 9. Направление схода стружки при положительном (а), равном нулю (б) и отрицательном (в) угле наклона главной режущей кромки.

В промышленности, машиностроении для получения требуемой точности и чистоты поверхности изготовленные отверстия подвергают дополнительной обработке. Достигают нужных показателей, используя расточной резец.

1 Токарный инструмент для растачивания – назначение и конструкция резцов

Резе́ц – режущий инструмент, который предназначен для обработки деталей или заготовок из различных материалов, а также разных форм, размеров, показателей точности. Является основным, наиболее часто применяемым инструментом при строгальных, долбежных и токарных работах (на станках соответствующего типа).

Чтобы придать изделию требуемые форму, размеры и точность изготовления с заготовки резцом снимают (срезают последовательно) слои материала. При этом инструмент и деталь, закрепленные жестко в станке, перемещаются относительно друг друга и взаимно контактируют. В результате этого рабочая часть резца врезается в слой материала, а затем срезает его в виде стружки.

У инструмента рабочий элемент представляет собой клин (острую кромку), который врезается в материал и деформирует его слой, вследствие чего сжатый фрагмент заготовки скалывается и сдвигается кромкой схода стружки (передней поверхностью) резца. Инструмент двигается дальше, что сопровождается повторением процесса скалывания и образованием из отдельных срезанных элементов стружки, вид которой зависит от скорости вращения материала заготовки, подачи станка, относительного расположения детали и резца, применения СОЖ (смазочно-охлаждающей жидкости) и ряда других причин.

По виду работ и применяемости инструмент делят на:

  • строгальный;
  • долбежный;
  • токарный.

Инструмент, снимающий стружку в результате взаимного прямолинейного перемещения резца и заготовки, называют строгальным (когда резание горизонтальное) или долбежным (вертикальное). Принцип работы обоих этих резцов идентичен и отличается от токарных, где резание непрерывно. При строгании и долблении инструмент режет исключительно при рабочем ходе.

В процессе токарной обработки заготовка вращается, в то время как осуществляется продольная и поперечная подача неподвижного резца, либо деталь стационарна, а инструмент вращается и подается (на расточных станках). Расточной токарный резец предназначен для расточки глухих и сквозных уже готовых отверстий, которые могут быть предварительно получены сверлением, штамповкой, в процессе отливки заготовки.

Основные элементы расточного токарного резца:

  • головка (рабочая часть);
  • державка (стержень) – используется для закрепления инструмента на станке.

Головка состоит из поверхностей:

  • передней – по ней во время резки сходит стружка;
  • главной задней – обращена к поверхности резания материала;
  • вспомогательной задней – обращена к обработанной поверхности детали;
  • главной режущей кромки – пересечение главной задней поверхности с передней;
  • вспомогательной режущей кромки – пересечение вспомогательной задней и передней поверхностей;
  • вершины – точка пересечения вспомогательной и главной режущих кромок.

Важными характеристиками резцов также являются углы, образуемые между поверхностями инструмента, плоскостями их проекций и касательными к ним, а также направлениями подачи. Инструмент для глухих и сквозных отверстий отличается формой головки.

2 Классификация и виды резцов для растачивания

Резцы для растачивания классифицируют по следующим основным параметрам. По направлению подачи делят на:

  • левые;
  • правые.

По конструкции:

  • прямые – осевая линия головки резца продолжает ось державки или параллельна ей;
  • отогнутые – ось головки отклонена влево или вправо от осевой державки;
  • изогнутые – ось державки изогнута;
  • оттянутые – головка инструмента уже державки;
  • разработки конструкторов и токарей-новаторов, другие.

По сечению стержня:

  • круглые;
  • квадратные;
  • прямоугольные.

По способу изготовления:

  • Цельные – материал изготовления державки и головки идентичен.
  • Составные – режущая часть выполнена в виде пластины, прикрепляемой определенным образом к державке из углеродистой конструкционной стали. Пластинки из рапида (быстрорежущей стали) и твердого сплава крепятся механически или припаиваются.

По роду материала:

  • из инструментальной стали:
    • углеродистой – для малых скоростей обработки, обозначение начинается с буквы У;
    • легированной – допустимо резать в 1,2–1,5 раза быстрее, чем инструментом из углеродистой, так как выше теплостойкость;
    • высоколегированной (быстрорежущей) – повышенной производительности, обозначение с буквы Р (Рапид);
  • из твердого сплава – скорости резания более высокие, чем у резцов из рапида, оснащены пластинами из твердых сплавов:
  • металлокерамическими:
    • вольфрамовыми – группы ВК из карбида вольфрама, который сцементирован кобальтом;
    • титановольфрамовыми – группы ТК из карбидов титана и вольфрама, сцементированных кобальтом;
    • титанотанталовольфрамовыми – группы ТТК из карбидов титана, тантала и вольфрама, сцементированных кобальтом;
  • минералокерамическими – характеризуются высокой теплостойкостью и одновременно очень хрупкие, что ограничивает их массовое применение, состоят из материалов, в основе которых технический глинозем (Аl 2 O 3);
  • керметовыми – материалы на основе минералокерамики с металлами и их карбидами, вводимыми для снижения хрупкости;
  • эльборовые – в основе материала режущих пластин кубический нитрид бора;
  • алмазные – с алмазными пластинами.

По типу установки относительно заготовки:

  • Радиальные – устанавливают перпендикулярно оси детали. Широко используются в промышленности, благодаря простоте крепления и удобному выбору геометрических характеристик режущей части.
  • Тангенциальные – параллельно оси обрабатываемой детали. При работе усилие резца направлено вдоль его оси, благодаря этому он не подвергается изгибу. В основном применяются на токарных полуавтоматах и автоматах, где главным критерием обработки является чистота.

По виду обработки:

  • черновые (обдирочные);
  • получистовые – отличаются от обдирочных вершиной, радиус закругления которой увеличен, благодаря чему шероховатость поверхности после обработки уменьшается;
  • чистовые;
  • для тонкого точения.

Также выделяют резцы для растачивания глубоких отверстий и двусторонние. Основные типы инструмента стандартизованы. На каждый вид такого изделия, как расточной резец, ГОСТ регламентирует соответствующие конструкцию и размеры.

  • При отсутствии зенкера или сверла для рассверливания необходимого диаметра.
  • Когда требуется обеспечить необходимые прямолинейность и точность положения оси отверстия.
  • Когда диаметр обрабатываемого отверстия превышает , зенкеров.
  • При малой длине отверстия.
  • Расточной инструмент применяют на специальных расточных, токарно-револьверных, токарных, фрезерных станках и автоматах, оборудовании для алмазной (тонкой) расточки. Закрепляют в специальных патронах, переходных втулках или державках.

    Резцы из инструментальной стали обычно используют при работах с легкими сплавами и материалами (фторопластом, текстолитом, алюминием и подобными), а оснащенные твердосплавными пластинами – с более прочными и твердыми (нержавеющая или закаленная сталь, бронза и другие). В процессе работы режущий инструмент подвержен износу (притупляется режущая кромка, а у изделий с твердосплавными пластинами выкрашивается), поэтому делают его переточку.

    Растачивают отверстия на токарных станках расточными резцами (рис. 118). В зависимости от вида растачиваемого отверстия различают: расточные резцы для сквозных отверстий (рис. 118, а) и расточные резцы для глухих отверстий (рис. 118, б). Эти резцы отличаются между собой главным углом в плане ф. При растачивании сквозных отверстий (рис. 118, а) главный угол в плане ф = 60°. Если растачивается глухое отверстие с уступом 90°, то главный угол в плане ф = 90° (рис. 118, б) и резец работает как упорно-проходной или ф = 95° (рис. 118, в) - резец работает с продольной подачей как упорно-проходной, а затем с поперечной подачей как подрезной.

    Углы заточки расточных резцов

    На рис. 118 показаны углы заточки расточных резцов, которые выбираются в основном такими же, как у резцов для наружного точения, за исключением заднего угла а, который для расточных резцов обычно имеет повышенное значение. Величина заднего угла зависит от диаметра растачиваемого отверстия: чем меньше диаметр отверстия, тем больше должен быть задний угол резца .

    Рис. 118. Расточные резцы, оснащенные пластинками твердого сплава : а - проходной для обработки сквозных отверстий, б и в - упорно-проходной для обработки глухих отверстий

    Сложность операции

    Растачивание - операция более сложная, чем наружное обтачивание поверхностей , так как:

    1. при растачивании размер поперечного сечения резца должен быть значительно меньше диаметра отверстия, а вылет резца из резцовой головки несколько больше длины растачиваемого отверстия (рис. 119), поэтому при растачивании отверстия значительной длины возможен изгиб резца, а при высоких скоростях резания - сильные вибрации. Следовательно, такие резцы не дают возможности срезать стружку большого сечения;
    2. при растачивании менее удобно наблюдать за работой резца, так как резание происходит внутри отверстия.

    Для растачивания отверстий диаметром до 70 мм токарь-новатор В. К. Семинский предложил специальный расточный резец, оснащенный пластинкой из твердого сплава (рис. 120). Стержень резца имеет квадратное сечение по всей длине, рабочая часть резца повернута путем скручивания при изготовлении на угол 45° относительно опорной части. Такой резец отличается повышенной жесткостью по сравнению с обычным расточным резцом и допускает увеличение сечения стружки в 4-5 раз. При работе таким резцом с повышенной скоростью резания не наблюдается вибраций даже при значительном вылете державки.

    Рис. 120. Расточный резец, оснащенный пластинкой твердого сплава , конструкции В. К. Семинского

    Чтобы повысить виброустойчивость резца , токарь-новатор В. Лакур предложил новую конструкцию расточного резца с пластинкой из твердого сплава (рис. 121). Особенностью этих резцов является то, что их главная режущая кромка расположена на уровне нейтральной оси стержня. Такое расположение режущей

    Рис. 121. Расточный резец конструкции В. Лакура

    кромки обеспечивает резцам значительное повышение виброустойчивости и, как следствие, дает возможность работать на больших скоростях резания и достигать улучшения чистоты обработанной поверхности.

    Рис. 122. Оправка с резцом для растачивания сквозного отверстия

    Установка резца

    Отверстия большой длины растачивают резцами, закрепленными в специальных массивных оправках, размеры которых зависят от диаметра отверстия и его длины. Замена цельного расточного резца небольшим резцом, вставленным в расточную оправку, дает значительную экономию дорогостоящего инструментального материала. Способ крепления резца в оправке зависит от ее назначения. На рис. 122 показана оправка для растачивания сквозного отверстия; здесь резец расположен на значительном расстоянии от конца оправки. Для растачивания глухих отверстий резец крепится таким образом, что несколько выступает за передний торец оправки.

    Перед растачиванием отверстия необходимо установить резец на требуемый диаметр по лимбу винта поперечной подачи, а затем расточить отверстие ручной подачей на длину 2-3 мм. Измерив диаметр штангенциркулем или другим измерительным прибором и убедившись в правильности размера, растачивают отверстие на остальную длину. Особенно важно правильно установить резец на требуемый диаметр при чистовом растачивании.

    Положение режущей кромки резца зависит от вида растачивания. При черновом растачивании режущую кромку рекомендуется устанавливать на высоте центров или немного ниже. При чистовом растачивании режущую кромку нужно располагать выше линии центров примерно на 1/100 диаметра отверстия, учитывая, что вследствие силы, возникающей от сопротивления срезаемой стружки, резец может быть отжат вниз.

    По виду обработки токарные резцы делятся на проходные, подрезные, расточные, отрезные, прорезные, канавочные, галтельпые, резьбовые и фасонные (рис. 11.10).

    Рис. 11.10.

    а – растачивание глухого отверстия расточным резцом; б – вытачивание канавок и отрезание отрезным подрезным резцом; в – продольное точение проходным резцом; г – вытачивание канавок канавочным резцом; д – прорезание конических канавок; в – чистовое точение закругленным резцом; ж – чистовое продольное точение широким резцом; з – продольное точение отогнутым резцом; и – нарезание резьбы резьбовым резцом; к – продольное точение упорным резцом; л – фасонное точение призматическим фасонным резцом

    Расточной резец применяют для растачивания предварительно просверленных осевых отверстий как сквозных, так и глухих (рис. 11.10, а).

    Подрезание (рис. 11.10, б) торцовых поверхностей у цилиндрических и обработку плоскостей у корпусных деталей выполняют при поперечной подаче суппорта подрезными резцами.

    Отрезание деталей и прорезание канавок (рис. 11.10, б, г) также проводят при поперечной подаче суппорта. Однако в этом случае используют соответственно отрезные и канавочные резцы.

    Наружные цилиндрические поверхности обтачивают прямыми или упорными проходными резцами (рис. 11.10, в, е, ж, з). Заготовки гладких валов обтачивают, установив их в центрах, ступенчатых валов – по схемам деления на части припуска или длины заготовки. Цилиндрические поверхности получают при обтачивании с продольной подачей суппорта.

    Наружные и внутренние резьбы нарезают резьбовыми резцами (рис. 11.10, и), которые позволяют получать все типы резьб: метрическую, дюймовую, модульную и питчевую с любым профилем – треугольным, прямоугольным, трапециевидным, полукруглым и т.п. Производительность процесса невысока.

    Продольное точение до уступа проводят упорным резцом (рис. 11.10, к ).

    Различные виды фасонных поверхностей вращения образуются в основном теми же методами, что и при обтачивании. Применяют призматические и дисковые фасонные резцы (рис. 11.10, л ) или механические, электрические или гидравлические копировальные устройства.

    Для протачивания закругленных канавок и переходных поверхностей используют галтельные резцы.

    Режимы резания

    Основными технологическими параметрами управления процессом резания являются: скорость резания V, подача инструмента S, глубина обработки t, материал инструмента и параметры его геометрии, состав, способы и интенсивность подачи смазочно-охлаждающей среды.

    Ориентировочно при черновом точении глубина обработки может достигать 12 мм, при чистовом – не более нескольких десятых долей миллиметра. Подача в зависимости от глубины резания и материала составляет -0,3-2,0 мм/об, скорость резания – 1,5-7,5 м/с. Для станков без ЧПУ режимы резания в зависимости от конкретных условий выбирают из таблиц общемашиностроительных нормативов. Современные станки с системами управления CNC имеют в памяти обширные базы данных на материалы, типовые конструкции, инструменты и др. Это позволяет оператору при введении исходного и конечного профилей заготовки, размеров и точности детали, свойств материала и др. получить автоматически информацию о маршруте обработки, видах инструментов и приступить к ее изготовлению.

    Твердым точением называют токарную обработку заготовок с твердостью выше 47 HRC и особыми режимами резания. Это новый, развивающийся вид обработки тел вращения, который зачастую является экономически более целесообразной альтернативой шлифованию. Современные инструментальные материалы, технологии и конструкции станков позволяют все шире внедрять этот процесс в производство.

    Различают черновое, точное и особо точное твердое точение. Черновое реализуется при глубинах обработки 0,5–3 мм, скоростях резания 50–150 м/мин и подачах 0,1-0,3 мм/об и требует от станка максимальной жесткости и мощности привода. При прецизионном твердом точении глубина резания не превышает 0,1-0,5 мм при скорости резания 100– 200 м/мин и подаче 0,05–0,15 мм/об. Точность обработки соответствует 5–6-му квалитету при шероховатости поверхности после обработки R z 2,4–4 мкм. Особо точное твердое точение обеспечивает точность обработки в пределах 3–4-го квалитета при шероховатости до R z 1 мкм. Глубина резания находится в пределах 0,02–0,3 мм при скорости резания 150–220 м/мин и подаче 0,01 – 1 мм/об.

    Функционально принцип твердого точения заключается в нагреве материала заготовки 1 в зоне контакта с режущей кромкой 4 до температуры свечения (рис. 11.11,11.12). Смазочно-охлаждающие жидкости в процессе не используются. Специально подобранная геометрия инструмента и режимы обработки нагревают материал, что приводит в зоне его среза 2 к отпуску до твердости около 25 HRC. После отделения стружки 3 происходит быстрое охлаждение материала.

    Рис. 11.11.

    1 – заготовка (62 HRC); 2 – зона среза (HRC 25); 3 – стружка (HRC 45); 4 – режущая кромка

    В результате твердость детали уменьшается не более чем на 2 единицы, а полученная стружка имеет твердость около 45 единиц. Деталь в своей основной массе практически не нагревается. Пример твердого точения показан на рис. 11.12.

    Рис. 11.12.

    Для осуществления твердого точения необходимо применение станков, обладающих высокой точностью, статической и динамической жесткостью, температурной стабильностью и обеспечивающих свободный сход стружки.

    Инструментальным материалом рабочей части резцов для твердого точения являются режущая керамика и кубический нитрид бора.