Сцинтилляционный счетчик. Газоразрядные и сцинтилляционные счетчики: устройство, принцип действия, применяемые типы, характеристики Сцинтилляционный счетчик кратко

Сцинтилляционный счетчик (рис. 88) имеет два основных элемента: сцинтиллятор, реаги­рующий на ядерное излучение вспышки света, и фотоэлектрон­ный умножитель (ФЭУ), преобразующий эти слабые вспышки света в электрические импульсы и усиливающий последние в миллионы раз.

Сцинтилляторы (люминофоры) работают следующим образом. Гамма-квант, попадая в сцинтиллятор, взаимодей­ствует с его атомами (фотоэффект и комптонэффект, образова­ние электронно-позитронных пар), что приводит к возникно­вению свободных зарядов (электронов и позитронов). Этим зарядам передается либо вся энергия кванта (фотоэффект), либо часть ее (комптонэффект, образование пар). Энергия сво­бодных зарядов расходуется на ионизацию и возбуждение ато­мов сцинтиллятора. При переходе из возбужденного состояния в основное атомы сцинтиллятора теряют энергию, полученную при возбуждении, в виде электромагнитных колебаний (свето­вых фотонов) - люминесценции.

Рис. 88. Принципиальная схема сцинтилляционного счетчика. 1-сцинтиллятор (люминофор); 2 - отражатель; 3 - ФЭУ; 4 - фотокатод;5 - фокусирующий динод; 6-диноды; 7-собирающий электрод (анод); 8- делитель напряжения

Образовавшиеся фотоны света в результате взаимодействия ядерных частиц или гамма-квантов со сцинтиллятором разлета­ются во все стороны, частично поглощаясь в толще кристалла сцинтиллятора. В связи с этим только часть фотонов попадает на фотоумножитель, и форма спектра световых фотонов, выхо­дящих из сцинтиллятора, отличается от формы спектра обра­зующих фотонов. Для увеличения числа фотонов, достигающих катода, стенки сцинтиллятора, кроме той, которая контакти­рует с фотокатодом, покрываются фотоотражающим слоем.

Из многочисленных сцинтилляторов наиболее часто применяются монокристаллы йодистого натрия Nа1 (Т1), которые характеризуются наиболее высо­кой эффективностью счета. Их основной недостаток - высокая гигроскопичность. В случае попадания в кристалл влаги он мутнеет и, следовательно, его эксплуатационные характеристики снижаются. Фотоэлектрический умножитель - устройство (см. рис. 88), соединяющее в себе фотоэлемент и электронный усилитель, действие которого основано на явлении вторичной электронной эмиссии. Фотоны из сцинтиллятора попадают на фотокатод ФЭУ.

Электроны, вылетающие из фотокатода, ускоряются элек­трическим полем и через диафрагму устремляются на первый электрод (динод) умножителя. Вследствие вторичной эмиссии каждый упавший электрон выбивает из диода несколько вто­ричных электронов, число которых зависит от приложенной между электродами разности потенциалов. Эти электроны, на­ходясь в поле притяжения второго динода, также ускоряются и вызывают вторичную электронную эмиссию на следующем диноде. Таким образом, происходит скачкообразное увеличение числа электронов на каждом диноде фотоэлектрического умно­жителя. Последним электродом в этой цепи служит анод, ко­торый для устранения ненужной теперь вторичной эмиссии электронов иногда выполняется в виде сетки и окружается эк­раном, соединенным с предпоследним электродом. Число динодов определяет полное усиление электронов фотоумножителя и у современных фотоумножителей колеблется от 8 до 14.



Основные преимущества сцинтилляционных счетчиков:

1) высокая чувствительность (эффективность), в том числе к гамма-лучам; 2) большая разрешающая способность ; 3) способность различать частицы по их энергии и из­мерять ее, т. е. проводить спектрометрию радиоактивных излу­чений. Таким образом, сцинтилляционные счетчики, соединяя в себе положительные качества пропорционального счетчика и счетчика Гейгера - Мюллера, обладают более высокой эф­фективностью и разрешающей способностью.

Недостатки сцинтилляционных счетчиков: 1) высокая чув­ствительность к изменению температуры окружающей среды;

2) повышенные требования к стабильности питающего напря­жения; 3) большой разброс параметров фотоумножителей и из­менение характеристик и параметров фотоумножителей в про­цессе их работы.

Сцинтилляционный счетчик

Принцип действия и область применения

В сцинтилляционном счетчике ионизирующее излучение вызывает вспышку света в соответствующем сцинтилляторе, который может быть как твердым, так и жидким. Эта вспышка передается в фотоэлектронный умножитель, который превращает ее в импульс электрического тока. Импульс тока усиливается в последующих ступенях ФЭУ вследствие их высокого коэффициента вторичной эмиссии.

Несмотря на то, что при работе с сцинтилляционными счетчиками в общем случае необходима более сложная электронная аппаратура, эти счетчики обладают по сравнению со счетчиками Гейгера - Мюллера существенными преимуществами.

1. Эффективность для счета рентгеновского и гамма-излучений значительно больше; при благоприятных обстоятельствах она достигает 100%.

2. Световая отдача в некоторых сцинтилляторах пропорциональна энергии возбуждающей частицы или кванта.

3. Временная разрешающая способность более высока.

Сцинтилляционный счетчик является, таким образом, детектором, пригодным для регистрации излучении малой интенсивности, для анализа распределения по энергиям при не слишком высоких требованиях к разрешающей способности и для измерений с помощью схемы совпадений при высокой интенсивности излучения.

Б) Сцинтилляторы

1) Протоны и другие сильно ионизирующие частицы. Если речь идет только о регистрации этих частиц, то одинаково пригодны все виды сцинтилляторов, причем, вследствие их высокой тормозной способности, достаточны слои толщиной порядка миллиметра и еще меньше. Надо, однако, иметь в виду, что световая отдача протонов и б-частиц в органических сцинтилляторах составляет лишь около "/ 10 от световой отдачи электронов той же энергии, в то время как в неорганических сцинтилляторах ZnS и NaJ обе они одного порядка.

Зависимость между энергией световых вспышек и связанной с ней величиной импульсов, а также энергией частиц, переданной сцинтиллятору, для органических веществ, вообще говоря, нелинейна. Для ZnS 1 NaJ и CsJ эта зависимость, однако, близка к линейной. Вследствие хорошей прозрачности для собственного флуоресцентного излучения кристаллы NaJ и CsJ позволяют получить отличную энергетическую разрешающую способность; надо, однако, следить за тем, чтобы поверхность, через которую частицы проникают в кристалл, была очень чистой.

2) Нейтроны. Медленные нейтроны можно обнаруживать, пользуясь реакциями Li6Hs, B10Li" или CdlisCd114. В качестве сцинтилляторов для этой цели применяются монокристаллы из LiJ, порошкообразные смеси, например, 1 весовая часть B 2 O 3 и 5 весовых частей ZnS, их напыляют непосредственно на окошко ФЭУ; также можно применять

Блок-схема сцинтилляционного спектрометра. 1 - сцинтиллятор, 2 - ФЭУ, з - источник высокого напряжения, 4 - катодный повторитель, д - линейный усилитель, 6 - амплитудный анализатор импульсов, 7 - регистрирующий прибор.

ZnS, суспендированный в расплавленном B 2 O 3 , соответствующие соединения бора в сцинтилляторах из искусственных веществ и смеси метилбората или пропионата кадмия с жидкими сцинтилляторами. Если при измерениях нейтронов надо исключить влияние г-излучения, то при тех реакциях, которые вызывают эмиссию тяжелых частиц, надо учитывать указанное выше соотношение для световой отдачи различных сцинтилляторов в зависимости от рода частиц.

Быстрые нейтроны регистрируются с помощью протонов отдачи, образующихся в водородсодержащих веществах. Так как высокое содержание водорода имеет место только в органических сцинтилляторах, то вследствие упомянутых причин уменьшить влияние г-излучения затруднительно. Лучшие результаты достигаются, если процесс образования протонов отдачи отделить от возбуждения сцинтиллятора г-лучами. В этом случае слой последнего должен быть тонким, его толщина определяется пробегом протонов отдачи, так что вероятность регистрации г-излучения существенно уменьшается. В качестве сцинтиллятора в этом случае предпочтительнее применять ZnS. Можно также суспендировать порошкообразный ZnS в прозрачном искусственном веществе, содержащем водород.

Энергетический спектр быстрых нейтронов при помощи сцинтилляторов исследовать почти невозможно. Это объясняется тем, что энергия протонов отдачи может принимать всевозможные значения, вплоть до полной энергии нейтронов, в зависимости оттого, каким образом происходит столкновение.

3) Электроны, в-частицы. Как и для других типов излучений, энергетическая разрешающая способность сцинтиллятора для электронов зависит от соотношения между световой энергией и энергией, переданной сцинтиллятору ионизирующей частицей. Это обусловлено тем, что полуширина кривой распределения величин импульсов, вызванных моноэнергетическими падающими частицами, вследствие статистических колебаний в первом приближении обратно пропорциональна квадратному корню из числа фотоэлектронов, выбитых из фотокатода ФЭУ. Из применяемых в настоящее время сцинтилляторов наибольшие амплитуды импульсов дает NaJ 1 а пз органических сцинтилляторов - антрацен, который при прочих равных условиях дает импульсы примерно в два раза меньшей амплитуды, чем NaJ.

Так как эффективные сечения рассеяния электронов сильно возрастают с увеличением атомного номера, то при применении NaJ 80-90% всех падающих электронов снова рассеивается из кристалла; при применении антрацена этот аффект достигает приблизительно 10%. Рассеянные электроны вызывают импульсы, величина которых меньше величины, отвечающей полной энергии электронов. Вследствие этого количественная оценка в-спектров, полученных при помощи кристаллов из NaJ, весьма затруднительна. Поэтому для в-спектроскопии часто более целесообразно применять органические сцинтилляторы, которые состоят из элементов с малыми атомными номерами.

Обратное рассеяние можно ослабить также следующими приемами. Вещество, в-излучение которого должно исследоваться, или примешивают к сцинтиллятору, если оно не подавляет флуоресцентного излучения, или помещают между двумя поверхностями сцинтилляторов, флуоресцентное Iryny 1 Ienne которых действует на фотокатод, или, наконец, применяют сцинтиллятор с внутренним каналом, в который проходит в-излучение.

Зависимость между световой энергией и энергией, переданной сцинтиллятору излучением, для NaJ линейна. Для всех органических сцинтилляторов это отношение при малой энергии электронов уменьшается. Указанная нелинейность должна учитываться при количественной оценке спектров.

4) Рентгеновское и гамм а-излучение. Процесс взаимодействия электромагнитного излучения с сцинтиллятором в основном состоит из трех элементарных процессов.

При фотоэффекте энергия кванта переходит почти полностью в кинетическую энергию фотоэлектрона, причем она вследствие малого пробега фотоэлектрона в большинстве случаев абсорбируется в сцинтилляторе. Вторичный квант, соответствующий энергии связи электрона, или также поглощается сцинтиллятором, или выходит из него.

В эффекте Комптона электрону передается "только часть энергии кванта. Эта часть с большой вероятностью поглощается в сцинтилляторе. Рассеянный фотон, энергия которого уменьшилась на величину, равную энергии комптон-электрона, также или поглощается сцинтиллятором, или выходит из него.

При образовании пар энергия первичного кванта, за вычетом энергии образования пары, переходит в кинетическую энергию этой пары и в основном поглощается сцинтиллятором. Излучение, образующееся при аннигиляции электрона и позитрона, поглощается в сцинтилляторе или выходит из него.

Энергетическая зависимость эффективных сечений для этих процессов такова, что при малой энергии квантов в основном имеет место фотоэффект; начиная с энергии 1,02 Мае, может наблюдаться образование пар, однако вероятность этого процесса достигает заметной величины лишь при существенно более высоких энергиях. В промежуточной области основную роль играет эффект Комптона.

С увеличением порядкового номера Z эффективные сечения при фотоэффекте и при образовании пар возрастают значительно сильнее, чем при эффекте Комптона. Однако при этом электрону передается:

1) при фотоэффекте, - кроме энергии кванта, переходящей в энергию электрона уже при первичном эффекте, еще только энергия связи фотоэлектрона, отвечающая вторичному излучению, мягкому и легко поглощаемому;

2) при образовании пар - только излучение аннигиляции с дискретной известной энергией. При эффекте Комптона энергия вторичных электронов и рассеянных квантов имеет широкую область возможных значений. Так как" вторичные кванты, как уже было сказано, могут не испытать поглощения и выйти из сцинтиллятора, то для облегчения интерпретации спектров целесообразно по возможности сузить область, в которой преобладает эффект Komhtohj, выбирая сцинтилляторы с большим Ж, например NaJ. Кроме того, отношение энергии света к переданной сцинтиллятору энергии для NaJ практически не зависит от энергии электронов; поэтому во всех сложных процессах, при которых кванты поглощаются, выделяется одинаковое количество света. Такие сложные процессы происходят с тем большей вероятностью, чем больше размеры сцинтиллятора.

Ослабление гамма-лучей в антрацене, ц - коэффициент ослабления; ф - коэффициент фотопоглощения, а - коэффициент комптоновского рассеяния, р - коэффициент образования пар.

В сцинтилляционном счетчике регистрация заряженной частицы связана с возбуждением атомов и молекул вдоль ее траектории. Возбужденные атомы, живущие короткое время, переходят в основное состояние, испуская электромагнитное излучение. У ряда прозрачных веществ, называемых фосфорами или люминофорами, часть спектра этого излучения приходится на световую область. Прохождение заряженной частицы через такое вещество вызывает вспышку света. Для увеличения выхода света и уменьшения его поглощения в фосфоре в последний добавляют так называемые активаторы. Вид активатора указывают в скобках после обозначения фосфора. Например, кристалл NaI, активированный таллием, обозначают NaI(Tl).

Попадание быстрой заряженной частицы в фосфор вызывает световую вспышку - сцинтилляцию. Последняя преобразуется в электрический импульс и усиливается в 10 5 -10 6 раз фотоэлектрическим умножителем (ФЭУ). Подобное сочетание двух элементов - фосфора и ФЭУ-используют в сцинтилляционных счетчиках (рис. 5.7).

Рис. 5.7. Принципиальная схема сцинтилляционного счётчика.

1 – кристалл NaI; 2 – фотокатод; 3 – фокусирующая электронная линза;

4 – эмиттеры (диноды); 5 - анод

Регистрация γ-квантов в сцинтилляционном счетчике происходит благодаря вторичным электронам и позитронам, образующимся при поглощении γ-квантов фосфором. Поскольку фосфоры обладают хорошей оптической прозрачностью, обеспечивающей сбор света на фотокатод ФЭУ со значительного объема фосфора, для регистрации γ-квантов можно применять фосфоры большой толщины. Это обеспечивает высокую эффективность регистрации γ-квантов сцинтилляционным счетчиком, на порядок и более превышающую эффективность газонаполненных счетчиков.

Фотоэлектронные умножители состоят из фотокатода, умножающих электродов (динодов) ианода (см. рис. 5.7). Потенциал каждого последующего электрода на некоторую величину (около 10 В) превышает потенциал предыдущего, что обеспечивает ускорение электронов между ними. Фотоны, поступающие из фосфора на фотокатод, выбивают из него несколько десятков или сотен электронов, которые фокусируются и ускоряются электрическим полем и бомбардируют первый динод. При торможении в диноде каждый ускоренный электрон выбивает до 5-10 вторичных электронов. Такой процесс, повторяясь на каждом последующем диноде, обеспечивает умножение электронов до многих миллионов раз.

Сцинтилляционные счетчики в ядерной геологии и геофизике используют для регистрации γ-квантов, реже нейтронов и β-частиц. При регистрации тяжелых заряженных частиц возникает трудность с обеспечением их ввода в фосфор. Поэтому для регистрации α-частиц чаще всего используют ионизационные камеры или торцовые счетчики. Лишь для регистрации α-активности эманации широко применяют сцинтилляционную камеру, внутренние стенки которой покрыты ZnS (Ag) .

Из-за термоэлектронной эмиссии фотокатода и первых динодов на выходе даже полностью затемненного ФЭУ возникает некоторый темновой ток, создающий небольшие фоновые импульсы. Для их отсечения в схему регистрации вводят дискриминаторы.

Особенности использования сцинтилляционных счетчиков для спектрометрии γ-излучения. При регистрации γ-квантов сцинтилляционным счетчиком амплитуда импульса на его выходе пропорциональна энергии электрона и позитрона, образовавшихся при взаимодействии кванта с сцинтиллятором. Если при фотоэффекте энергия фотоэлектрона равна энергии кванта (за вычетом небольшой величины - энергии связи К -электрона), то электрону при комптоновском рассеянии и паре электрон-позитрон в эффекте образования пар передается лишь часть энергии кванта. При комптон-эффекте в зависимости от угла рассеяния γ-кванта энергия электрона может меняться в широких пределах (рис. 5.8.), а при эффекте образования пар - кинетическая энергия пары на 1,02 МэВ меньше, чем энергия кванта.

Рис. 5.8. Упрощенная схема распределения энергии вторичных

электронов в люминофоре при: а – фотоэффекте, б – комптоновском рассеянии,

в – образовании пар; N - число импульсов, Е – энергия вторичных электронов.

В результате спектр энергии вторичных частиц, образованных в сцинтилляторе монохроматическим пучком γ-квантов имеет сложный вид. Появление дополнительных линий Е v = 0,51 МэВ и Е у при эффекте образования пар обусловлено тем, что в ряде случаев один или даже оба γ-кванта с энергией 0,51 МэВ, образующихся при аннигиляции позитрона, поглощаются в сцинтилляторе в результате фотоэффекта и вспышка от этих фотоэлектродов сливается со вспышкой от первичной пары электрон-позитрон. Максимальная энергия комптоновского электрона

Реальное амплитудное распределение импульсов на выходе ФЭУ более расплывчатое, чем спектр электронов на рис. 5.8 из-за статистического характера процессов в фосфоре и ФЭУ. Оно не дискретное, а непрерывное. Типичный аппаратурный спектр изотопа 24 Na (Е Y =1,38 и 2,76 МэВ) приведен на рис.5.9.

Для линии 1,38 МэВ вклад эффекта образования пар ничтожен и соответствующие пики почти незаметны, образуется лишь пик 1,38 МэВ, обусловленный фотоэффектом, а также менее четкий комптоновский пик с энергией 1,17 МэВ. Для линии 2,76 МэВ наблюдаются три пика с энергиями 1,74, 2,25 и 2,76 МэВ. Два первых пика обязаны эффекту образования пар, а последний пик (2,76 МэВ) трем процессам: фотоэффекту, эффекту образования пар, сопровождающемуся поглощением обоих квантов аннигиляции; комптон-эффекту, когда рассеянный квант также поглощается фосфором в результате фотоэффекта. Во всех трех процессах в световую энергию превращается вся энергия кванта. Поэтому этот пик называют пиком полного поглощения.

Форма пика полного поглощения близка к гауссовой кривой. Отношение μ=ΔЕ/Е полуширины пика ΔЕ на половине его высоты к средней энергии Е называют амплитудным разрешением счетчика. Чем меньше μ, тем лучше спектрометр. Значение μ обычно растет с уменьшением энергии и для хороших сцинтилляционных спектрометров при Е v = l,33 МэВ (60 Со) составляет 6%.

Сцинтилляционные счетчики обеспечивают гораздо большую эффективность регистрации γ-квантов (до 30-50 % и более), чем газоразрядные, и дают возможность изучения спектрального состава излучения. К преимуществам сцинтилляционных счетчиков относится также более низкий уровень их собственного и космического фона.

Рис. 5.9. Аппаратурный спектр γ-излучения , содержащий линии

с энергией 1,38 и 2,76 МэВ.

Однако сцинтилляционные счетчики более сложны и требуют более квалифицированного обслуживания, чем разрядные. Это обусловлено большим влиянием температуры на световыход фосфоров, несравненно более высокими требованиями к стабилизации источника питания, а также более сильным изменением характеристик сцинтилляционных счетчиков во времени.

Эффект сцинтилляции для количественного определения радионуклидов начинали использовать еще во времена Резерфорда, который визуально считал сцинтилляционные вспышки под микроскопом. За сто лет принципиальных изменений не произошло. Рядом с источником излучения помещают сцинтиллятор и ФЭУ (фотоэлектронный умножитель), который считает вспышки. Сцинтиллятор может быть твердым, а может быть и жидким (чаще, растворенным в жидкости). Во флакон (vial) с жидким сцинтиллятором добавляют тестируемый образец, и в этом случае можно эффективно измерять даже самое "слабое", низкоэнергетическое излучение.

При измерении активности (радиоактивности) любых образцов и для любых средств измерения необходимо помнить несколько простых, но важных правил:

Радиоактивный распад является классическим примером случайного, вероятностного природного процесса и, рассматривая измерение активности как регистрацию случайных событий, мы получаем математическую ошибку измерения активности:

где n -- число "событий" (в нашем случае распадов).

Например, для 400 зарегистрированных импульсов на любом приборе независимо от времени измерения (наблюдения) 4001/2 / 400 х 100% = 5%, т.е. ошибка 5%. Это означает, что чем больше число измерений (собственно счет), тем меньше математическая ошибка измерения. Более того, вопреки устоявшейся традиции, для снижения математической ошибки измерения надо считать не число зарегистрированных прибором распадов (импульсов) за единицу времени, а время, необходимое для "накопления нужного" числа импульсов -- например, 10000 имп. Тем не менее, во всем мире активность с помощью счетчиков измеряют как количество импульсов за единицу времени (обычно по 1 минуте).

Все счетчики имеют верхний предел измерения, после которого их точность падает, так как счетчик не успевает регистрировать -- "захлебывается". Для сцинтилляционных счетчиков -- это активность на уровне 106ч107 расп./мин. Некоторые типы счетчиков имеют встроенную блокировку и отказываются считать образцы, активность которых превышает установленную для данной модели. Оптимальная активность образца для точного измерения 104ч106 расп./мин.

Проводя количественные измерения, например, определяя концентрацию радионуклида в растворе, всегда делайте хотя бы 2, а лучше 3 измерения независимых аликвот и активность определяйте как среднюю из 2 -- 3 измерений. Затраты времени на "лишние" процедуры будут с лихвой компенсированы отсечением случайных "выбросов". Разброс в измерениях, особенно у начинающих исследователей, может достигать 200% и более, хотя в норме не должен превышать обычную ошибку рутинного отбора аликвот.

Ни один измерительный прибор не регистрирует 100% всех "распадов" (decompositions) в измеряемом образце. Эффективность счета -- это коэффициент, который связывает зарегистрированные прибором импульсы (counts) и реальные распады (decompositions). Поэтому для любого измерения распады/мин. (dpm -- decompositions per min.) больше импульсов/мин. (cpm -- counts per min.). Правда, для большинства радионуклидов, применяемых в life science, эффективность жидкостного сцинтилляционного счета составляет более 90%. Однако, тритий удается измерять с эффективность не более 50ч60%. Обычно эффективность счета для каждого радионуклида указывается в технической документации к прибору, и долгое время негласное соревнование между фирмами за более высокую эффективность счета трития было чуть ли не главным двигателем технического прогресса в этой области.

Все измерительные приборы имеют собственный "фон" -- регистрируют какое-то количество импульсов без источника ионизирующего излучения (радиоактивного препарата). Природа фона различна: космическое излучение, электронный шум, содержание природных радионуклидов в помещении, где установлена измерительная аппаратура и т.д. Поэтому минимально достоверная величина активности, измеряемая прибором, увязывается с фоном и обычно принимается равной трехкратному превышению фона данного прибора. Если в вашем "эпохальном" эксперименте активность "главного" образца едва-едва превышает фон, попытайтесь увеличить время измерения (можно до 20 мин.) -- тогда достоверность измерения возрастёт.

В большинстве случаев в life science абсолютные измерения активности не нужны, и гораздо важнее получить информацию об относительной активности образцов: распределение активности по гелю, хроматографической пластинке или по элюированным с колонки продуктам; доля субстрата, превратившегося в продукт под действием фермента; доля лиганда, связанного с рецептором; детекция продуктов метаболизма соединения, меченного радионуклидом, и другие аналогичные задачи. Поэтому очень важно, чтобы условия приготовления и измерения образцов в конкретном эксперименте были одинаковыми, тогда абсолютные погрешности в измерениях не окажут существенного влияния на биологические результаты.

Наиболее ярко эту относительность измерений иллюстрирует широкое использование минимониторов -- приборов, предназначенных для определения загрязнения поверхностей рабочих столов, одежды и т.д. Небольшие карманные приборы, имеющие ионизационный счетчик (обычно это ионизационная камера или счетчик Гейгера), оказались очень удобными для детекции меченного фосфором-32 фрагмента ДНК в агарозном геле или меченного йодом-125 белка в ПААГ и т.п. Некоторые ухитряются по показаниям такого прибора оценивать включение меченых предшественников биосинтеза в биополимеры после разделения продуктов реакции, используют мониторы для измерения активности образцов на фильтрах, кусках фильтровальной или хроматографической бумаги и даже в пробирках. Это удобно и полезно для качественных и полуколичественных оценок, но следует помнить, что приборные ошибки в таких измерениях могут быть очень значительными и достигать 200--300%.

Жидкостные сцинтилляционные счетчики уже многие годы остаются главным инструментом для количественного измерения радионуклидов. Несмотря на разнообразие конструкций, с точки зрения пользователя, все они измеряют активность образцов, помещенных в специальный стеклянный или пластиковый флакон и заполненный жидким сцинтиллятором. Поскольку измерение активности сводится к подсчету вспышек света, жидкость во флаконе должна быть прозрачная для счета и гомогенная по составу. Все отклонения от этого требования снижают эффективность счета, причем иногда существенно. Образование осадка или двухфазной несмешивающейся жидкой системы, наличие образцов биологических тканей или фильтровальных материалов -- все эти факторы снижают эффективность счета. То же самое касается добавок многих химических веществ: кислот, щелочей, концентрированных растворов сахаров, солей, мочевины и многое другое. Особенно это касается измерений трития, где разница в эффективности счета для гомогенного, почти идеального, образца и образца, нанесенного на хроматографический сорбент, может быть в 10ч30 раз и даже больше. Это необходимо учитывать, если при составлении баланса по активности вдруг куда-то исчезнет часть радиоактивного материала или откуда-то внезапно появится "лишнее".

Составы сцинтилляторов весьма разнообразны и фирмы, производящие сцинтилляционные коктейли, часто не раскрывают их состав. Классический (едва ли не самым первый) жидкий сцинтиллятор -- это толуольный раствор 2,5-дифенилоксазола (РРО) с добавкой 1,4-ди--бензола (РОРОР). Состав: 4 г РРО и 0,2 г РОРОР на 1 л толуола. Не вдаваясь в подробности, следует подчеркнуть, что это -- неводная система, а водные растворы считать в таком сцинтилляторе не принято. Для измерения водных проб к такому сцинтиллятору добавляют тритон Х-100 до 30% по объему.

Другим вариантом "водолюбивого" сцинтиллятора является диоксановый: 60 г нафталина, 4 г РРО, 0,2 г РОРОР, 200 мл спирта и до 1 л диоксан марки "сцинтиляционный". Впрочем, большинство исследователей сегодня успешно пользуются готовыми фирменными коктейлями, справедливо не задумываясь над их составом.

Важными источниками ошибок для жидкостного сцинтилляционного счета являются "засветка" сцинтилляционной жидкости и электризация счетных флаконов. Оба эффекта легко нейтрализуются во времени (не спешите сразу считать, дайте пробам постоять в темном пространстве прибора несколько минут), кроме того, электризация почему-то чаще проявляется на стеклянных флаконах, и реже -- на одноразовых пластиковых.

Внедрение в технологию биоскрининга радиометрических методов анализа подвигло разработчиков на создание высокопроизводительных сцинтилляционных счетчиков для измерения активности в планшетах. Для радиоактивных изотопов фосфора прибор используется в модификации с внешним твердым сцинтиллятором, который и является детектором. Для трития твердый сцинтиллятор добавляют прямо в лунку планшета в виде специальных бусинок и, так как эти бусинки являются одновременно компонентом биохимической реакции, то связанный с "бусами" меченый тритием лиганд считается сцинтиллятором, а не связанный, находящийся в растворе, -- не считается. С радиохимической точки зрения эффективность счета в таких измерениях очень низкая, но для биоскрининга важно относительное распределение меченых соединений в системе "связанный-несвязанный", а высокая производительность и простота операций оправдывают колоссальные затраты на реализацию таких методов.

являются вещество, люминесцирующее под действием заряженных частиц (сцинтиллятор), и фотоэлектронный умножитель (ФЭУ). Визуальные наблюдения световых вспышек (сцинтилляций) под действием ионизирующих частиц (a-частиц, осколков деления ядер) были основным методом ядерной физики в начале 20 в. (см. Спинтарископ ). Позднее Сцинтилляционный счётчик был полностью вытеснен ионизационными камерами и пропорциональными счётчиками . Его возвращение в ядерную физику произошло в конце 40-х гг., когда для регистрации сцинтилляций были использованы многокаскадные ФЭУ с большим коэффициентом усиления, способные зарегистрировать чрезвычайно слабые световые вспышки.

Принцип действия Сцинтилляционный счётчик состоит в следующем: заряженная частица, проходя через сцинтиллятор, наряду с ионизацией атомов и молекул возбуждает их. Возвращаясь в невозбуждённое (основное) состояние, атомы испускают фотоны (см. Люминесценция ). Фотоны, попадая на катод ФЭУ, выбивают электроны (см. Фотоэлектронная эмиссия ), в результате чего на аноде ФЭУ возникает электрический импульс, который далее усиливается и регистрируется (см. рис. ). Детектирование нейтральных частиц (нейтронов, g-квантов) происходит по вторичным заряженным частицам, образующимся при взаимодействии нейтронов и g-квантов с атомами сцинтиллятора.

В качестве сцинтилляторов используются различные вещества (твёрдые, жидкие, газообразные). Большое распространение получили пластики, которые легко изготовляются, механически обрабатываются и дают интенсивное свечение. Важной характеристикой сцинтиллятора является доля энергии регистрируемой частицы, которая превращается в световую энергию (конверсионная эффективность h). Наибольшими значениями hобладают кристаллические сцинтилляторы: , активированный , антрацен и . Др. важной характеристикой является время высвечивания t, которое определяется временем жизни на возбуждённых уровнях. Интенсивность свечения после прохождения частицы изменяется экспоненциально: , где 0 - начальная интенсивность. Для большинства сцинтилляторов t лежит в интервале 10 –9 - 10 –5 сек. Короткими временами свечения обладают пластики (табл. 1). Чем меньше t, тем более быстродействующим может быть сделан Сцинтилляционный счётчик

Для того чтобы световая вспышка была зарегистрирована ФЭУ, необходимо, чтобы спектр излучения сцинтиллятора совпадал со спектральной областью чувствительности фотокатода ФЭУ, а материал сцинтиллятора был прозрачен для собственного излучения. Для регистрации медленных нейтронов в сцинтиллятор добавляют или В. Для регистрации быстрых нейтронов используются водородсодержащие сцинтилляторы (см. Нейтронные детекторы ). Для спектрометрии g-квантов и электронов высокой энергии используют Nal (), обладающий большой плотностью и высоким эффективным атомным номером (см. Гамма-излучение ).

Сцинтилляционный счётчик изготавливают со сцинтилляторами разных размеров - объёмом от 1-2 мм 3 до 1-2 м 3 . Чтобы не «потерять» излученный свет, необходим хороший контакт ФЭУ со сцинтиллятором. В Сцинтилляционный счётчик небольших размеров сцинтиллятор непосредственно приклеивается к фотокатоду ФЭУ. Все остальные его стороны покрываются слоем светоотражающего вещества (например, , O 2). В Сцинтилляционный счётчик большого размера используют световоды (обычно из полированного органического стекла).

ФЭУ, предназначенные для Сцинтилляционный счётчик , должны обладать высокой эффективностью фотокатода (до 2,5%), высоким коэффициентом усиления (10 8 -10 8), малым временем собирания электронов (~ 10 –8 сек ) при высокой стабильности этого времени. Последнее позволяет достичь разрешающей способности по времени Сцинтилляционный счётчик £10 –9 сек. Высокий коэффициент усиления ФЭУ наряду с малым уровнем собственных шумов делает возможной регистрацию отдельных электронов, выбитых с фотокатода. Сигнал на аноде ФЭУ может достигать 100 в.

Табл. 1. - Характеристики некоторых твёрдых и жидких сцинтилляторов,

применяемых в сцинтилляционных счётчиках


Вещество

Плотность, г/см 3

Время высвечивания, t,

10 -9 сек.




Конверсионная эффективность h, % (для электронов)

Кристаллы

Антрацен 14 H 10

1,25

30

4450

4

Стильбен 14 H 12

1,16

6

4100

3

Na ()

3,67

250

4100

6

ZnS ()

4,09

11

4500

10

Csl ()

4,5

700

5600

2

Жидкости

Раствор р -терфенила в ксилоле (5 г/л) с добавлением РОРОР 1 (0,1 г/л)

0,86

2

3500

2

Раствор р -терфенила в толуоле (4 г/л) с добавлением РОРОР (0,1г/л)

0,86

2,7

4300

2,5

Пластики

Полистирол с добавлением р -терфенила (0,9%) и a- O 2 (0,05 весовых %)

1,06

2,2

4000

1,6

Поливинилтолуол с добавлением 3,4% р -терфенила и 0,1 весовых % РОРОР

1,1

3

4300

2

1 РОРОР - 1,4-ди--бензол. 2 O - 2-(1-нафтил)-5-фенилоксазол.

Достоинства Сцинтилляционный счётчик : высокая эффективность регистрации различных частиц (практически 100%); быстродействие; возможность изготовления сцинтилляторов разных размеров и конфигураций; высокая надёжность и относительно невысокая стоимость. Благодаря этим качествам Сцинтилляционный счётчик широко применяется в ядерной физике, физике элементарных частиц и космических лучей , в промышленности (радиационный контроль), дозиметрии , радиометрии , геологии, медицине и т. д. Недостатки Сцинтилляционный счётчик : малая чувствительность к частицам низких энергий (£ 1 кэв ), невысокая разрешающая способность по энергии (см. Сцинтилляционный спектрометр ).

Для исследования заряженных частиц малых энергий (< 0,1 Мэв ) и осколков деления ядер в качестве сцинтилляторов применяются газы (табл. 2). Газы обладают линейной зависимостью величины сигнала от энергии частицы в широком диапазоне энергий, быстродействием и возможностью менять тормозную способность изменением давления. Кроме того, источник может быть введён в объём газового сцинтиллятора. Однако газовые сцинтилляторы требуют высокой чистоты газа и специального ФЭУ с кварцевыми окнами (значительная часть излучаемого света лежит в ультрафиолетовой области).

Табл. 2. - Характеристики некоторых газов, применяемых в качестве

сцинтилляторов в сцинтилляционных счётчиках (при давлении 740 мм

рт. ст., для a-частиц с энергией 4,7 Мэв )


Газ

Время высвечивания t,

сек


Длина волны в максимуме спектра,

Конверсионная эффективность n, %

3900

2

Лит.: Бирке Дж., Сцинтилляционные счетчики, пер. с англ., М., 1955; Калашникова В. И., Козодаев М. С., Детекторы элементарных частиц, в кн.: Экспериментальные методы ядерной физики, М., 1966; Ритсон Д., Экспериментальные методы в физике высоких энергий, пер. с англ., М., 1964.

Статья про слово "Сцинтилляционный счётчик " в Большой Советской Энциклопедии была прочитана 24733 раз